Home About us Contact | |||
Vomeronasal System (vomeronasal + system)
Selected AbstractsSpatially and temporally regulated expression of specific heparan sulfate epitopes in the developing mouse olfactory systemDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 2 2010Jun Takatoh Heparan sulfate (HS) comprises a structurally diverse group of glycosaminoglycans present ubiquitously on cell surfaces and in the extracellular matrix. The spatially and temporally regulated expression of specific HS structures is essential for various developmental processes in the nervous system but their distributions in the mouse olfactory system have not been explored. Here, we examined the spatiotemporal distribution of particular HS species in the developing mouse olfactory system using three structure-specific monoclonal antibodies (HepSS-1, JM403 and NAH46). The major findings were as follows. (i) During olfactory bulb morphogenesis, the HepSS-1 epitope was strongly expressed in anterior telencephalic cells and coexpressed with fibroblast growth factor receptor 1. (ii) In early postnatal glomeruli, the JM403 epitope was expressed at different levels among individual glomeruli. The expression pattern and levels of the JM403 epitope were both associated with those of ephrin-A3. (iii) In the vomeronasal system, the JM403 epitope was expressed in all vomeronasal axons but became increasingly restricted to vomeronasal axons terminating in the anterior region of the accessory olfactory bulb by 3 weeks of age. Our results demonstrate that each HS epitope exhibits a unique expression pattern during the development of the mouse olfactory system. Thus, each HS epitope is closely associated with particular developmental processes of the olfactory system and might have a particular role in developmental events. [source] Subicular and CA1 hippocampal projections to the accessory olfactory bulbHIPPOCAMPUS, Issue 2 2009C. de la Rosa-Prieto Abstract The hippocampal formation is anatomically and functionally related to the olfactory structures especially in rodents. The entorhinal cortex (EC) receives afferent projections from the main olfactory bulb; this constitutes an olfactory pathway to the hippocampus. In addition to the olfactory system, most mammals possess an accessory olfactory (or vomeronasal) system. The relationships between the hippocampal formation and the vomeronasal system are virtually unexplored. Recently, a centrifugal projection from CA1 to the accessory olfactory bulb has been identified using anterograde tracers. In the study reported herein, experiments using anterograde tracers confirm this projection, and injections of retrograde tracers show the distribution and morphology of a population of CA1 and ventral subicular neurons projecting to the accessory olfactory bulb of rats. These results extend previous descriptions of hippocampal projections to the accessory olfactory bulb by including the ventral subiculum and characterizing the morphology, neurochemistry (double labeling with somatostatin), and distribution of such neurons. These data suggest feedback hippocampal control of chemosensory stimuli in the accessory olfactory bulb. Whether this projection processes spatial information on conspecifics or is involved in learning and memory processes associated with chemical stimuli remains to be elucidated. © 2008 Wiley-Liss, Inc. [source] General organization of the perinatal and adult accessory olfactory bulb in miceTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 9 2006Ignacio Salazar Abstract The vomeronasal system is currently a topical issue since the dual functional specificity, vomeronasal system-pheromones, has recently been questioned. Irrespective of the tools used to put such specificity in doubt, the diversity of the anatomy of the system itself in the animal kingdom is probably of more importance than has previously been considered. It has to be pointed out that a true vomeronasal system is integrated by the vomeronasal organ, the accessory olfactory bulb, and the so-called vomeronasal amygdala. Therefore, it seems reasonable to establish the corresponding differences between a well-developed vomeronasal system and other areas of the nasal cavity in which putative olfactory receptors, perhaps present in other kinds of mammals, may be able to detect pheromones and to process them. In consequence, a solid pattern for one such system in one particular species needs to be chosen. Here we report on an analysis of the general morphological characteristics of the accessory olfactory bulb in mice, a species commonly used in the study of the vomeronasal system, during growth and in adults. Our results indicate that the critical period for the formation of this structure comprises the stages between the first and the fifth day after birth, when the stratification of the bulb, the peculiarities of each type of cell, and the final building of glomeruli are completed. In addition, our data suggest that the conventional plexiform layers of the main olfactory bulb are not present in the accessory bulb. Anat Rec Part A, 288A:1009,1025, 2006. © 2006 Wiley-Liss, Inc. [source] |