Voltammetric Response (voltammetric + response)

Distribution by Scientific Domains


Selected Abstracts


Improved Voltammetric Response of L -Tyrosine on Multiwalled Carbon Nanotubes-Ionic Liquid Composite Coated Glassy Electrodes in the Presence of Cupric Ion

ELECTROANALYSIS, Issue 19 2008
Liqin Liu
Abstract L -Tyrosine can exhibit a small anodic peak on multiwalled carbon nanotubes (MWCNTs) coated glassy carbon electrodes (GCE). At pH,5.5 its peak potential is 0.70,V (vs. SCE). When an ionic liquid (i.e., 1-octyl-3-methylimidazolium hexafluorophosphate, [omim][PF6]) is introduced on the MWCNT coat, the peak becomes bigger. Furthermore, in the presence of Cu2+ ion the anodic peak of L -tyrosine increases further due to the formation of Cu2+ - L -tyrosine complex, while the peak potential keeps unchanged. Therefore, a sensitive voltammetry based on the oxidation of Cu2+ - L -tyrosine complex on MWCNTs-[omim][PF6] composite coated electrode is developed for L -tyrosine. Under the optimized conditions, the anodic peak current is linear to L -tyrosine concentration in the range of 1×10,8,5×10,6 M, and the detection limit is 8×10,9 M. The modified electrode shows good reproducibility and stability. In addition, the voltammetric behavior of other amino acids is explored. It is found that among them tryptophan (Trp) and histidine (His) can also produce sensitive anodic peak under same experimental conditions, and their detection limits are 4×10,9 M and 4×10,6 M, respectively. [source]


Analysis of the Voltammetric Response of Electroactive Guests in the Presence of Non-Electroactive Hosts at Moderate Concentrations

ELECTROANALYSIS, Issue 18 2004
Sandra Mendoza
Abstract In this work, we present a method to analyze the voltammetric response of reversible redox systems involving molecules that, bearing m non-interactive electroactive sites, can undergo fast complexation equilibria with host molecules present at concentrations of the same order of magnitude as those of the electroactive guest. The approach focuses on systems for which the relative values of the binding constants for the oxidized and reduced forms of the guest result in the displacement of the voltammetric response of the electroactive molecule as the concentration of the host is increased in the electrolytic solution. This behavior is commonly known as "one wave shift behavior". Based on a series of assumptions, the method allows calculation of all the thermodynamic parameters that describe the electrochemical and complexation equilibria of a given host-guest system. The main strength of the suggested method, however, relies on the fact that it only requires cyclic voltammetry data and that it can be used for systems in which large concentrations of the host can not be employed either due to important changes of the ionic strength or to solubility problems. Although the accuracy of the obtained information is limited by the quality of the data provided by the technique, and by the assumptions employed, it certainly represents an excellent starting point for subsequent refinement either using digital simulations or an independent experimental technique. [source]


Voltammetric Detection of Lead(II) Using Amide-Cyclam- Functionalized Silica-Modified Carbon Paste Electrodes

ELECTROANALYSIS, Issue 15 2009
Stéphanie Goubert-Renaudin
Abstract 2-(4,8,11-Triscarbamoylmethyl-1,4,8,11-tetraazacyclotetradec-1-yl)acetamide (TETAM) derivatives bearing 1, 2, or 4 silylated arms have been synthesized and grafted to the surface of silica gel and ordered mesoporous silica samples. The resulting organic-inorganic hybrids have been incorporated into carbon paste electrodes and applied to the preconcentration electroanalysis of Pb(II). The attractive recognition properties of these cyclam derivatives functionalized with amide pendent groups toward Pb(II) species and the highly porous structure of the adsorbents can be exploited for the selective and sensitive detection of the target analyte. Various parameters affecting the preconcentration and detection steps have been discussed with respect to the composition and pH of both accumulation and detection media, the nature of the adsorbent (number of silylated groups linking the macrocycle to silica, texture of materials), the accumulation time, and the presence of interfering cations. Under optimal conditions and for 2,min accumulation at open-circuit, the voltammetric response increased linearly with the Pb(II) concentration in a range extending from 2×10,7 to 10,5,M, while a longer accumulation time of 15,min afforded a linear calibration curve between 10,8 and 10,7,M with a detection limit of 2.7×10,9,M which is well below the European regulatory limit of lead in consumption water. [source]


The Influence of Electrode Porosity on Diffusional Cyclic Voltammetry

ELECTROANALYSIS, Issue 22 2008
Denis Menshykau
Abstract A simple generic model to predict the influence of electrode porosity on the cyclic voltammetric response of an electrode is presented. The conditions under which deviation from the behavior of a perfectly flat, planar electrode can be expected are predicted. The scope for misinterpretation when conventional flat electrode theory is applied to porous electrodes is highlighted, especially in respect to the extraction of electrode kinetic parameters and the influence of ,electrocatalysis'. [source]


Differential Pulse Voltammetric Determination of Uric Acid on Carbon-Coated Iron Nanoparticle Modified Glassy Carbon Electrodes

ELECTROANALYSIS, Issue 10 2008
Shengfu Wang
Abstract A carbon-coated iron nanoparticles (CIN, a new style fullerence related nanomaterial) modified glassy carbon electrode (CIN/GCE) has been developed for the determination of uric acid (UA). Electrochemical behaviors of UA on CIN/GCE were explored by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the voltammetric response of UA on CIN/GC was enhanced dramatically because of the strong accumulation effect of CIN and the large working area of the CIN/GC electrode. The parameters including the pH of supporting electrolyte, accumulation potential and time, that govern the analytical performance of UA have been studied and optimized. The DPV signal of UA on CIN/GCE increased linearly with its concentration in the range from 5.0×10,7 to 2.0×10,5 M, with a detection limit of 1.5×10,7 M (S/N=3). The CIN/GCE was used for the determination of UA in samples with satisfactory results. The proposed CIN/GCE electrochemical sensing platform holds great promise for simple, rapid, and accurate detection of UA. [source]


Pulsed Amperometric Detection of Histamine at Glassy Carbon Electrodes Modified with Gold Nanoparticles

ELECTROANALYSIS, Issue 4 2005
V. Carralero
Abstract Gold nanocrystal-modified glassy carbon electrodes (nAu-GCE) were prepared and used for the determination of histamine by flow injection and high performance liquid chromatography using pulsed amperometric detection (PAD) as the detection mode. Experimental variables involved in the electrodeposition process of gold from a HAuCl4 solution were optimized. A catalytic enhancement of the histamine voltammetric response was observed at the nAu-GCE when compared with that obtained at a conventional Au disk electrode, as a consequence of the microdispersion of gold nanocrystals on the GC substrate. The morphological and electrochemical characteristics of the nAu-GCE were evaluated by SEM and cyclic voltammetry. PAD using a very simple potential waveform consisting of an anodic potential (+700,mV for 500,ms) and a cathodic potential (,300,mV for 30,ms), was used to avoid the electrode surface fouling when histamine was detected under flowing conditions. Flow injection amperometric responses showed much higher Ip values and signal-to-noise ratios at the nAu-GCE than at a conventional gold disk electrode. A limit of detection of 6×10,7,mol L,1 histamine was obtained. HPLC-PAD at the nAu-GCE was used for the determination of histamine in the presence of other biogenic amines and indole. Histamine was determined in sardine samples spiked at a 50,,g g,1 concentration level, with good results. Furthermore, the chromatographic PAD method was also used for monitoring the formation of histamine during the decomposition process of sardine samples. [source]


A Selective Voltammetric Method for Uric Acid Detection at a Glassy Carbon Electrode Modified with Electrodeposited Film Containing DNA and Pt-Fe(III) Nanocomposites

ELECTROANALYSIS, Issue 20 2004
Shuqing Wang
Abstract A novel biosensor by electrochemical codeposited Pt-Fe(III) nanocomposites and DNA film was constructed and applied to the detection of uric acid (UA) in the presence of high concentration of ascorbic acid (AA). Based on its strong catalytic activity toward the oxidation of UA and AA, the modified electrode resolved the overlapping voltammetric response of UA and AA into two well-defined peaks with a large anodic peak difference (,Epa) of about 380mV. The catalytic peak current obtained from differential pulse voltammetry (DPV) was linearly dependent on the UA concentration from 3.8×10,6 to 1.6×10,4,M (r=0.9967) with coexistence of 5.0×10,4,M AA. The detection limit was 1.8×10,6,M (S/N=3) and the presence of 20 times higher concentration of AA did not interfere with the determination. The modified electrode shows good sensitivity, selectivity and stability. [source]


Analysis of the Voltammetric Response of Electroactive Guests in the Presence of Non-Electroactive Hosts at Moderate Concentrations

ELECTROANALYSIS, Issue 18 2004
Sandra Mendoza
Abstract In this work, we present a method to analyze the voltammetric response of reversible redox systems involving molecules that, bearing m non-interactive electroactive sites, can undergo fast complexation equilibria with host molecules present at concentrations of the same order of magnitude as those of the electroactive guest. The approach focuses on systems for which the relative values of the binding constants for the oxidized and reduced forms of the guest result in the displacement of the voltammetric response of the electroactive molecule as the concentration of the host is increased in the electrolytic solution. This behavior is commonly known as "one wave shift behavior". Based on a series of assumptions, the method allows calculation of all the thermodynamic parameters that describe the electrochemical and complexation equilibria of a given host-guest system. The main strength of the suggested method, however, relies on the fact that it only requires cyclic voltammetry data and that it can be used for systems in which large concentrations of the host can not be employed either due to important changes of the ionic strength or to solubility problems. Although the accuracy of the obtained information is limited by the quality of the data provided by the technique, and by the assumptions employed, it certainly represents an excellent starting point for subsequent refinement either using digital simulations or an independent experimental technique. [source]


Low-oxidation-potential conducting polymers derived from 3,4-ethylenedioxythiophene and dialkoxybenzenes

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2001
Jennifer A. Irvin
Abstract Monomers derived from 3,4-ethylenedioxythiophene and phenylenes with branched or oligomeric ether dialkoxy substituents were prepared with the Negishi coupling technique. Electrooxidative polymerization led to the corresponding dialkoxy-substituted 3,4-ethylenedioxythiophene,phenylene polymers, with extremely low oxidation potentials (E1/2,p = ,0.16 to ,0.50 V vs Ag/Ag+) due to the highly electron-rich nature of these materials. The polymers were electrochromic, reversibly switching from red to blue upon oxidation, with bandgaps at about 2 eV. The electrochemical behavior of the oligomeric ether-substituted polymer was investigated in the presence of different metal ions. Films of the polymer exhibited electrochemical recognition for several alkali and alkaline-earth cations with selectivity in the order Li+ > Ba2+ > Na+ > Mg2+. Cyclic voltammetry showed a decrease in the oxidation potential and an improvement in the definition of the voltammetric response, as well as an increase in the overall electroactivity of the polymer films when the concentration of the cations in the medium was increased. These results are discussed in terms of the electrostatic interactions between the complexed cation and the redox center, as well as the diffusion of the ionic species into the polymer matrix. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2164,2178, 2001 [source]


Voltammetric Antioxidant Analysis in Mineral Oil Samples Immobilized into Boron-Doped Diamond Micropore Array Electrodes

ELECTROANALYSIS, Issue 12 2009
Xiaohang Zhang
Abstract Mineral oil microdroplets containing the model antioxidant N,N -didodecyl- N,,N, -diethyl-phenylene-diamine (DDPD) are immobilized into a 100×100 pore-array (ca. 10,,m individual pore diameter, 100,,m pitch) in a boron-doped diamond electrode surface. The robust diamond surface allows pore filling, cleaning, and reuse without damage to the electrode surface. The electrode is immersed into aqueous electrolyte media, and voltammetric responses for the oxidation of DDPD are obtained. In order to further improve the current responses, 20,wt% of carbon nanofibers are co-deposited with the oil into the pore array. Voltammetric signals are consistent with the oxidation of DDPD and the associated transfer of perchlorate anions (in aqueous 0.1,M NaClO4) or the transfer of protons (in aqueous 0.1,M HClO4). From the magnitude of the current response, the DDPD content in the mineral oil can be determined down to less than 1,wt% levels. Perhaps surprisingly, the reversible (or midpoint) potential for the DDPD oxidation in mineral oil (when immersed in 0.1 NaClO4) is shown to be concentration-dependent and to shift to more positive potential values for more dilute DDPD in mineral oil solutions. An extraction mechanism and the formation of a separate organic product phase are proposed to explain this behavior. [source]


Disposable Gold Electrodes with Reproducible Area Using Recordable CDs and Toner Masks

ELECTROANALYSIS, Issue 1 2006
Denise Lowinsohn
Abstract The fabrication and characterization of very cheap disposable gold disk electrodes with reproducible area is reported. The innovation of the proposed procedure is the use of toner masks to define reproducible areas on uniform gold surfaces obtained from recordable compact disks (CD-R). Toner masks are drawn in a laser printer and heat transferred to gold surfaces, defining exactly the electrodes area. The electrochemical behavior of these disposable electrodes was investigated by cyclic voltammetry in Fe(CN)64, solutions. The relative standard deviation for signals obtained from 10 different gold electrodes was below 1 %. The size of the disk electrodes can be easily controlled, as attested by voltammetric responses recorded by using electrodes with radii varying from 0.5 to 3.0,mm. The advantages of using this kind of electrode for analytical measurements of substances that strongly adsorb on the electrode surface such as cysteine are also addressed. [source]


Nanodiamond Thin Film Electrodes: Metal Electro-Deposition and Stripping Processes

ELECTROANALYSIS, Issue 3 2003
Hian, Lau Chi
Abstract The properties of a nanodiamond thin film deposit formed on titanium substrates in a microwave-plasma enhanced CVD process, are investigated for applications in electroanalysis. The nanodiamond deposit consists of intergrown nano-sized platelets of diamond with a high sp2 carbon content giving it high electrical conductivity and electrochemical reactivity. Nanodiamond thin film electrodes (of approximately 2,,m thickness) are characterized by electron microscopy and electrochemical methods. First, for a reversible one electron redox system, Ru(NH3)63+/2+, nanodiamond is shown to give well-defined diffusion controlled voltammetric responses. Next, metal deposition processes are shown to proceed on nanodiamond with high reversibility and high efficiency compared to processes reported on boron-doped diamond. The nucleation of gold is shown to be facile at edge sites, which are abundant on the nanodiamond surface. For the deposition and stripping of both gold and copper, a stripping efficiency (the ratio of electro-dissolution charge to electro-deposition charge) of close to unity is detected even at low concentrations of analyte. The effect of thermal annealing in air is shown to drastically modify the electrode characteristics probably due to interfacial oxidation, loss of active sp2 sites, and loss of conductivity. [source]


Kinetic study of electrochemically induced Michael reactions of o -benzoquinones with 2-acetylcyclohexanone and 2-acetylcyclopentanone

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 1 2007
Davood Nematollahi
Abstract The reaction of electrochemically generated o -benzoquinones (2a-f) as Michael acceptors with 2-acetylcyclohexanone (ACH) and 2-acetylcyclopentanone (ACP), as nucleophiles has been studied in various pHs using cyclic voltammetry. The results indicate that the participation of o -benzoquinones (2a-f) in the Michael reaction with acetylcyclohexanone (ACH) to form the corresponding catechol derivatives (4a-f). Based on an EC mechanism, the homogeneous rate constants were estimated by comparing the experimental cyclic voltammetric responses with the digital simulated results. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Selective Voltammetric Determination of Uric Acid in the Presence of Ascorbic Acid at Ordered Mesoporous Carbon Modified Electrodes

CHINESE JOURNAL OF CHEMISTRY, Issue 6 2008
Yan-Li WEN
Abstract A novel chemically modified electrode was fabricated by immobilizing ordered mesoporous carbon (OMC) onto a glassy carbon (GC) electrode. The electrocatalytic behavior of the OMC modified electrode towards the oxidation of uric acid (UA) and ascorbic acid (AA) was studied. Compared to a glassy carbon electrode, the OMC modified electrode showed a faster electron transfer rate and reduced the overpotentials greatly. Furthermore, the OMC modified electrode resolved the overlapping voltammetric responses of UA and AA into two well-defined voltammetric peaks with peak separation of ca. 0.38 V. All results show that the OMC modified electrode has a good electrocatalytic ability to UA and AA, and has an excellent response towards UA even in the presence of high concentration AA. [source]