Voltammetric Experiments (voltammetric + experiment)

Distribution by Scientific Domains


Selected Abstracts


A New Indirect Electroanalytical Method to Monitor the Contamination of Natural Waters with 4-Nitrophenol Using Multiwall Carbon Nanotubes

ELECTROANALYSIS, Issue 9 2009
Cruz Moraes, Fernando
Abstract The electrochemical detection of the hazardous pollutant 4-nitrophenol (4-NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4-NP in natural water. Electrochemical impedance spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4-NP on the GC/MWNCT surface) in a potential region which is approximately 700,mV less positive than that needed to oxidize 4-NP, thus minimizing the interference of matrix components. The limit of detection for 4-NP obtained using square-wave voltammetry (0.12,,mol L,1) was lower than the value advised by EPA. A natural water sample from a dam located in São Carlos (Brazil) was spiked with 4-NP and analyzed by the standard addition method using the GC/MWCNT electrode, without any further purification step. The recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4-NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV-vis detection. [source]


Microwave Activation of Electrochemical Processes at Glassy Carbon and Boron-Doped Diamond Electrodes

ELECTROANALYSIS, Issue 5-6 2005
Kumar Sur, Ujjal
Abstract Voltammetric experiments under intense microwave field conditions have been carried out at a carbon microfiber electrode, an array of carbon microfiber electrodes, and at a boron-doped diamond electrode. For the reversible one electron redox systems Fe(CN) and Ru(NH3) in aqueous KCl solution increased currents (up to 16 fold at a 33,,m diameter carbon microelectrode) and superheating (up to ca. 400,K at all types of electrodes) are observed. Electrodes with smaller diameter allow better signal enhancements to be achieved. From the missing effect of the supporting electrolyte concentration on the microwave enhanced currents, it can be concluded that effects observed at carbon electrodes (microwave absorbers) are due to the interaction of microwaves with the electrode material whereas for metal electrodes (microwave conductors) effects are dominated by the interaction of the microwaves with the aqueous dielectric. Short heat pulses can be applied by pulsing the microwave field and relatively fast temperature transients are observed for small electrodes. For the irreversible two electron oxidation of L -dopa in aqueous phosphate buffer, different types of effects are observed at glassy carbon and at boron-doped diamond. Arrays of carbon microfibers give the most reproducible and analytically useful current signal enhancements in the presence of microwaves. [source]


Microdimensional Polyaniline: Fabrication and Characterization of Dynamics of Charge Propagation at Microdisk Electrodes

ELECTROANALYSIS, Issue 17 2004
Karolina Caban
Abstract We describe fabrication of microdimensional polyanilne films in a controlled manner by voltammetric potential cycling or controlled potential electrolysis on platinum microdisk electrodes. The film grows in a form of hemispherical microdeposits, and its size largely exceeds the size of a Pt microdisk. Consequently, the film covers both the Pt substrate as well as the surrounding glass seal. Since the adhering polyaniline layer is conducting, the latter situation may lead to an increase in the effective electrode surface area. The lateral growth of polyaniline films outside the microdisk has also been demonstrated by performing diagnostic voltammetric experiments with use of a double microdisk set-up in which independent polarization of each disk is feasible. Microelectrode-based chronocoulometry, that involves an uncomplicated well-defined reduction potential step starting from the emeraldine (conducting) form and ending at leucoemeraldine (nonconducting) form, yields (upon application of a sufficiently short pulse) a well-defined linear response of charge versus square root of time that is consistent with the linear effective diffusion as the predominant charge propagation mechanism. When describing the system kinetics in terms of the effective (apparent) diffusion coefficient, we expect this parameter to be on the level of 10,8,cm2 s,1 or lower. The relative changes in dynamics of charge transport are discussed with respect to the polyaniline film loading, the size of microdisk electrode, expansion of the active electrode area, and the choice of electrolyte (strong acid) anion. The results are consistent with the view that when Pt microelectrode is modified with PANI deposit exceeding the size of the microdisk substrate, it behaves in a way as if its surface area is effectively much larger than the geometric area of Pt microdisk. [source]


An ESR and electrochemical approach to the unusual reactivity of ferrocenoylsilanes with organometallic compounds

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 12 2004
A. Alberti
Abstract ESR studies carried out during the reaction of ferrocenoylsilanes with Grignard reagents at low temperature led to the detection of the radical anions of the former compounds. Cyclic voltammetric experiments indicate that the observed radical anions are likely to originate through an inner-sphere electron transfer process. Different radical species were observed upon annealing, originating from destruction of the ferrocenyl moiety. Paramagnetic species were also detected on reacting ferrocenoylsilanes with LiAlH4. Copyright © 2004 John Wiley & Sons, Ltd. [source]