Home About us Contact | |||
Voltage Dependency (voltage + dependency)
Selected AbstractsGating of the expressed T-type Cav3.1 calcium channels is modulated by Ca2+ACTA PHYSIOLOGICA, Issue 4 2006L. Lacinová Abstract Aim:, We have investigated the influence of Ca2+ ions on the basic biophysical properties of T-type calcium channels. Methods:, The Cav3.1 calcium channel was transiently expressed in HEK 293 cells. Current was measured using the whole cell patch clamp technique. Ca2+ or Na+ ions were used as charge carriers. The intracellular Ca2+ was either decreased by the addition of 10 mm ethyleneglycoltetraacetic acid (EGTA) or increased by the addition of 200 ,m Ca2+ into the non-buffered intracellular solution. Various combinations of extra- and intracellular solutions yielded high, intermediate or low intracellular Ca2+ levels. Results:, The amplitude of the calcium current was independent of intracellular Ca2+ concentrations. High levels of intracellular Ca2+ accelerated significantly both the inactivation and the activation time constants of the current. The replacement of extracellular Ca2+ by Na+ as charge carrier did not affect the absolute value of the activation and inactivation time constants, but significantly enhanced the slope factor of the voltage dependence of the inactivation time constant. Slope factors of voltage dependencies of channel activation and inactivation were significantly enhanced. The recovery from inactivation was faster when Ca2+ was a charge carrier. The number of available channels saturated for membrane voltages more negative than ,100 mV for the Ca2+ current, but did not reach steady state even at ,150 mV for the Na+ current. Conclusions:, Ca2+ ions facilitate transitions of Cav3.1 channel from open into closed and inactivated states as well as backwards transition from inactivated into closed state, possibly by interacting with its voltage sensor. [source] Gap junctional coupling between progenitor cells at the retinal margin of adult goldfishDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2001Fuminobu Tamalu Abstract We prepared living slice preparations of the peripheral retina of adult goldfish to examine electrical membrane properties of progenitor cells at the retinal margin. Cells were voltage-clamped near resting potential and then stepped to either hyperpolarizing or depolarizing test potentials using whole-cell voltage-clamp recordings. Electrophysiologically examined cells were morphologically identified by injecting both Lucifer Yellow (LY) and biocytin. All progenitor cells examined (n = 37) showed a large amount of passively flowing currents of either sign under suppression of the nonjunctional currents flowing through K+ and Ca2+ channels in the cell membrane. They did not exhibit any voltage-gated Na+ currents. Cells identified by LY fills were typically slender. As the difference between the test potential and the resting potential increased, 13 out of 37 cells exhibited symmetrically voltage- and time-dependent current decline on either sign at the resting potential. The symmetric current profile suggests that the current may be driven and modulated by the junctional potential difference between the clamping cell and its neighbors. The remaining 24 cells did not exhibit voltage dependency. A gap junction channel blocker, halothane, suppressed the currents. A decrease in extracellular pH reduced coupling currents and its increase enhanced them. Dopamine, cAMP, and retinoic acid did not influence coupling currents. Injection of biocytin into single progenitor cells revealed strong tracer coupling, which was restricted in the marginal region. Immature ganglion cells closely located to the retinal margin exhibited voltage-gated Na+ currents. They did not reveal apparent tracer coupling. These results demonstrate that the marginal progenitor cells couple with each other via gap junctions, and communicate biochemical molecules, which may subserve or interfere with cellular differentiation. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 204,214, 2001 [source] A modelling study of locomotion-induced hyperpolarization of voltage threshold in cat lumbar motoneuronesTHE JOURNAL OF PHYSIOLOGY, Issue 2 2002Yue Dai During fictive locomotion the excitability of adult cat lumbar motoneurones is increased by a reduction (a mean hyperpolarization of ,6.0 mV) of voltage threshold (Vth) for action potential (AP) initiation that is accompanied by only small changes in AP height and width. Further examination of the experimental data in the present study confirms that Vth lowering is present to a similar degree in both the hyperpolarized and depolarized portions of the locomotor step cycle. This indicates that Vth reduction is a modulation of motoneurone membrane currents throughout the locomotor state rather than being related to the phasic synaptic input within the locomotor cycle. Potential ionic mechanisms of this locomotor-state-dependent increase in excitability were examined using three five-compartment models of the motoneurone innervating slow, fast fatigue resistant and fast fatigable muscle fibres. Passive and active membrane conductances were set to produce input resistance, rheobase, afterhyperpolarization (AHP) and membrane time constant values similar to those measured in adult cat motoneurones in non-locomoting conditions. The parameters of 10 membrane conductances were then individually altered in an attempt to replicate the hyperpolarization of Vth that occurs in decerebrate cats during fictive locomotion. The goal was to find conductance changes that could produce a greater than 3 mV hyperpolarization of Vth with only small changes in AP height (< 3 mV) and width (< 1.2 ms). Vth reduction without large changes in AP shape could be produced either by increasing fast sodium current or by reducing delayed rectifier potassium current. The most effective Vth reductions were achieved by either increasing the conductance of fast sodium channels or by hyperpolarizing the voltage dependency of their activation. These changes were particularly effective when localized to the initial segment. Reducing the conductance of delayed rectifier channels or depolarizing their activation produced similar but smaller changes in Vth. Changes in current underlying the AHP, the persistent Na+ current, three Ca2+ currents, the ,h' mixed cation current, the ,A' potassium current and the leak current were either ineffective in reducing Vth or also produced gross changes in the AP. It is suggested that the increased excitability of motoneurones during locomotion could be readily accomplished by hyperpolarizing the voltage dependency of fast sodium channels in the axon hillock by a hitherto unknown neuromodulatory action. [source] Membrane Permeabilization of a Mammalian Neuroendocrine Cell Type (PC12) by the Channel-Forming Peptides Zervamicin, Alamethicin, and GramicidinCHEMISTRY & BIODIVERSITY, Issue 6 2007Abstract Zervamicin IIB (ZER) is a 16-mer peptaibol that produces voltage-dependent conductances in artificial membranes, a property considered responsible for its antimicrobial activity to mainly Gram -positive microorganisms. In addition, ZER appears to inhibit the locomotor activity of the mouse (see elsewhere in this Issue), probably by affecting the brain. To examine whether the electrophysiological properties of the neuronal cells of the central neural system might be possibly influenced by the pore forming ZER, the present study was undertaken as a first attempt to unravel the molecular mechanism of this biological activity. To this end, membrane permeabilization of the neuron-like rat pheochromocytoma cell (PC12) by the channel-forming ZER was studied with the whole-cell patch-clamp technique, and compared with the permeabilizations of the well-known voltage-gated peptaibol alamethicin F50/5 (ALA) and the cation channel-forming peptide-antibiotic gramicidin D (GRAM). While 1,,M GRAM addition to PC12 cells kept at a membrane potential Vm=0,mV causes an undelayed gradual increase of a leak conductance with a negative reversal potential of ca. ,24,mV, ZER and ALA are ineffective at that concentration and potential. However, if ZER and ALA are added in 5,10,,M concentrations while Vm is kept at ,60,mV, they cause a sudden and strong permeabilization of the PC12 cell membrane after a delay of 1,2,min, usually leading to disintegrating morphology changes of the patched cell but not of the surrounding cells of the culture at that time scale. The zero reversal potential of the established conductance is consistent with the known aselectivity of the channels formed. This sudden permeabilization does not occur within 10,20,min at Vm=0,mV, in accordance with the known voltage dependency of ZER and ALA channel formation in artificial lipid membranes. The permeabilizing action of these peptaibols on the culture as a whole is further supported by K+ -release measurements from a PC12 suspension with a K+ -selective electrode. Further analysis suggested that the permeabilizing action is associated with extra- or intracellular calcium effects, because barium inhibited the permeabilizing effects of ZER and ALA. We conclude, for the membrane of the mammalian neuron-like PC12 cell, that the permeabilizing effects of the peptides ZER and ALA are different from those of GRAM, consistent with earlier studies of these peptides in other (artificial) membrane systems. They are increased by cis -positive membrane potentials in the physiological range and may include calcium entry into the PC12 cell. [source] |