Home About us Contact | |||
Volatile Organics (volatile + organic)
Terms modified by Volatile Organics Selected AbstractsThe hydroxyl radical reaction rate constant and products of 3,5-dimethyl-1-hexyn-3-ol,INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 10 2004J. R. Wells A bimolecular rate constant,kDHO, of (29 ± 9) × 10,12 cm3 molecule,1 s,1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with 3,5-dimethyl-1-hexyn-3-ol (DHO, HCCC(OH)(CH3)CH2CH(CH3)2) at (297 ± 3) K and 1 atm total pressure. To more clearly define DHO's indoor environment degradation mechanism, the products of the DHO + OH reaction were also investigated. The positively identified DHO/OH reaction products were acetone ((CH3)2CO), 3-butyne-2-one (3B2O, HCCC(O)(CH3)), 2-methyl-propanal (2MP, H(O)CCH(CH3)2), 4-methyl-2-pentanone (MIBK, CH3C(O)CH2CH(CH3)2), ethanedial (GLY, HC(O)C(O)H), 2-oxopropanal (MGLY, CH3C(O)C(O)H), and 2,3-butanedione (23BD, CH3C(O)C(O)CH3). The yields of 3B2O and MIBK from the DHO/OH reaction were (8.4 ± 0.3) and (26 ± 2)%, respectively. The use of derivatizing agents O -(2,3,4,5,6-pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O -bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible DHO/OH reaction mechanisms based on previously published volatile organic compound/OH gas-phase reaction mechanisms. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 534,544, 2004 [source] A data base for partition of volatile organic compounds and drugs from blood/plasma/serum to brain, and an LFER analysis of the dataJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2006Michael H. Abraham Abstract Literature values of the in vivo distribution (BB) of drugs from blood, plasma, or serum to rat brain have been assembled for 207 compounds (233 data points). We find that data on in vivo distribution from blood, plasma, and serum to rat brain can all be combined. Application of our general linear free energy relationship (LFER) to the 207 compounds yields an equation in log BB, with R2,=,0.75 and a standard deviation, SD, of 0.33 log units. An equation for a training set predicts the test set of data with a standard deviation of 0.31 log units. We further find that the invivo data cannot simply be combined with in vitro data on volatile organic and inorganic compounds, because there is a systematic difference between the two sets of data. Use of an indicator variable allows the two sets to be combined, leading to a LFER equation for 302 compounds (328 data points) with R2,=,0.75 and SD,=,0.30 log units. A training equation was then used to predict a test set with SD,=,0.25 log units. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 95:2091,2100, 2006 [source] Ozone exposure and its influence on the worsening of childhood asthmaALLERGY, Issue 7 2009S. I. V. Sousa Background:, It is well documented that high levels of many airborne pollutants can adversely affect many systems of the human body. The aim of this study was to evaluate the specific impact of ozone (O3) on the worsening of childhood asthma, comparing children living at regions with high and low O3 concentrations (reference site) without the confounding effects of other pollutants. Methods:, Pollutant concentrations were monitored and data concerning asthma prevalence were collected through a questionnaire. The studied population consisted of 478 children aged 6,13 years old enrolled in four schools of the municipalities where monitoring was performed. Remote sites were identified with very low concentrations of nitrogen dioxide and volatile organic compounds and high concentrations of O3. Results:, The prevalence of wheeze for lifetime period and in the past year was 15.9% and 6.3%, respectively. Asthmatic children were identified when dyspnoea and wheezing were simultaneously mentioned in the absence of upper respiratory infections; according to that, the lifetime prevalence of asthmatic symptoms at the remote sites was 7.1%. The comparison with other previous studies was difficult because the criteria for analysis are not conveniently established. Conclusion:, The prevalence of childhood asthmatic symptoms was about 4% higher at the high O3 site than at the low O3 site. [source] Toxicity of brominated volatile organics to freshwater biotaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2010Monique T. Binet Abstract As part of a larger study investigating the fate and effects of brominated volatile organic compounds (VOCs) in contaminated groundwaters discharging to surface waters, the toxicity of 1,2 dibromoethene (DBE) and 1,1,2-tribromoethene (TriBE) to freshwater aquatic biota was investigated. Their toxicity to bacteria (Microtox®), microalgae (Chlorella sp.), cladocerans (Ceriodaphnia dubia), duckweed (Lemna sp.) and midges (Chironomus tepperi) was determined after careful optimization of the test conditions to minimize chemical losses throughout the tests. In addition, concentrations of DBE and TriBE were carefully monitored throughout the bioassays to ensure accurate calculation of toxicity values. 1,2-Dibromoethene showed low toxicity to most species, with concentrations to cause 50% lethality or effect (LC/EC50 values) ranging from 28 to 420,mg/L, 10% lethality or effect (LC/EC10 values) ranging from 18 to 94,mg/L and no-observed-effect concentrations (NOECs) ranging from 22 to 82,mg/L. 1,1,2-Tribromoethene was more toxic than DBE, with LC/EC50 values of 2.4 to 18,mg/L, LC/EC10 values of 0.94 to 11,mg/L and NOECs of 0.29 to 13,mg/L. Using these limited data, together with data from the only other published study on TriBE, moderate-reliability water quality guidelines (WQGs) were estimated from species sensitivity distributions. The proposed guideline trigger values for 95% species protection with 50% confidence were 2,mg/L for DBE and 0.03,mg/L for TriBE. The maximum concentrations of DBE and TriBE in nearby surface waters (3 and 1,µg /L, respectively) were well below these WQGs, so the risk to the freshwater environment receiving contaminated groundwater inflows was considered to be low, with hazard quotients <1 for both VOCs. Environ. Toxicol. Chem. 2010;29:1984,1993. © 2010 SETAC [source] Study of Five Discrete-Interval-Type Ground Water Sampling DevicesGROUND WATER MONITORING & REMEDIATION, Issue 3 2004Louise V. Parker Five relatively newly developed discrete-interval-type ground water sampling devices,the KABIS, HydraSleeve, Discrete Interval, Pneumo-Bailer, and USGS passive diffusion bag (PDB) samplers,were tested to determine their ability to recover representative concentrations of a variety of analytes,volatile organics, explosives, pesticides, and metals,from a standpipe and trichloroethylene (TCE) from a deep monitoring well. Samples taken from a well were compared with samples taken using low-flow sampling. The PDB sampler was the easiest to use, but could only be used to sample volatile organic compounds (VOCs). The HydraSleeve and the KABIS samplers were also easy to use; these devices produced representative concentrations of explosives, pesticides, and metals in the standpipe experiments, but elevated the turbidity in our monitoring well. Although there were statistically significant differences for some VOCs with both devices, these differences were generally very small (< 5%). The one exception was an 18% loss of TCE with the KABIS sampler. The Discrete Interval sampler and the Pneumo-Bailer are pressurized devices that are designed to only collect a sample when activated. The Pneumo-Bailer was heavy and awkward to handle, required a nitrogen tank in the field, and involved many steps to operate. The Discrete Interval sampler only required a bicycle pump to pressurize the chamber and was lighter and easier to handle and operate than its counterpart. Both devices generally delivered representative concentrations of all the analytes tested. [source] Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerancePLANT CELL & ENVIRONMENT, Issue 9 2010LUCIAN COPOLOVICI ABSTRACT To gain insight into variations in waterlogging responsiveness, net assimilation rate, stomatal conductance, emissions of isoprene and marker compounds of anoxic metabolism ethanol and acetaldehyde, and stress marker compounds nitric oxide (NO), volatile products of lipoxygenase (LOX) pathway and methanol were studied in seedlings of temperate deciduous tree species Alnus glutinosa, Populus tremula and Quercus rubra (from highest to lowest waterlogging tolerance) throughout sustained root zone waterlogging of up to three weeks. In all species, waterlogging initially resulted in reductions in net assimilation and stomatal conductance and enhanced emissions of ethanol, acetaldehyde, NO, LOX products and methanol, followed by full or partial recovery depending on process and species. Strong negative correlations between gs and internal NO concentration and NO flux, valid within and across species, were observed throughout the experiment. Isoprene emission capacity was not related to waterlogging tolerance. Less waterlogging tolerant species had greater reduction and smaller acclimation capacity in foliage physiological potentials, and larger emission bursts of volatile stress marker compounds. These data collectively provide encouraging evidence that emissions of volatile organics and NO can be used as quantitative measures of stress tolerance and acclimation kinetics in temperate trees. [source] Remedial options for chlorinated volatile organics in a partially anaerobic aquiferREMEDIATION, Issue 4 2004Xiujin Qiu A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA) with half-lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1-TCA, and the derivative cis-dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C-TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2-dichloropropane (1,2-DCP) and 1,1-dichlorethane (1,1-DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half-lives for 1,2-DCP and 1,1-DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate-modified Fenton's reagent was effective in degrading aqueous-phase PCE, TCE, 1,1,1-TCA, 1,2-DCP, etc.; however, this approach had minimal effects on solid-phase contaminants. The observed oxidant demand was 16 g-H2O2/L-groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero-valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1-TCA only to 1,1-DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2-DCP, 1,1-DCA, and CA. The longevity test showed that one gram of 325-mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10,2 Lm,2h,1, 2 × 10,3 Lm,2h,1, and 1.2 × 10,3 Lm,2h,1 for 1,1,1-TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc. [source] |