Vinyl Methyl Ether (vinyl + methyl_ether)

Distribution by Scientific Domains


Selected Abstracts


Rheological Investigation of Shear Induced-Mixing and Shear Induced-Demixing for Polystyrene/Poly(vinyl methyl ether) Blend

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 9 2004
Samy A. Madbouly
Abstract Full Paper: The phase behavior of polystyrene (PS) and poly(vinyl methyl ether) (PVME) blend has been investigated rheologically as a function of temperature, composition and oscillating shear rate as well as different heating rates. An LCST (lower critical solution temperature)-type phase diagram was detected rheologically from the sudden changes in the slopes of the dynamic temperature ramps of G, at given heating and shear rate values. The rheological cloud points were dependent on the heating rate, , and oscillating shear rate, . The cloud points shifted a few degrees to higher temperatures with increasing and reached an equilibrium value (heating rate independent) at ,°C/min. The phase diagrams of the blends detected at ,=,0.1 and 1 rad/s were located in lower temperature ranges than the quiescent phase diagram, i.e., oscillating shear rate induced-demixing at these two values for the shear rate. On the other hand, at ,=,10 rad/s, the phase diagram shifted to higher temperatures, higher than the corresponding values found under quiescent conditions, i.e., shear induced-mixing took place. Based on these two observations, shear induced-demixing and shear induced-mixing can be detected rheologically within a single composition at low and high shear rate values, respectively, and this is in good agreement with the previous investigation using simple shear flow techniques. In addition, the William, Landel and Ferry (WLF)-superposition principle was found to be applicable only in the single-phase regime; however, the principle broke-down at a temperature higher than or equal to the cloud point. Furthermore, different spinodal phase diagrams were estimated at different oscillating shear rates based on the theoretical approach of Ajji and Choplin. Spinodal phase diagrams at different oscillating shear rates. [source]


Ternary miscibility in blends of three polymers with balanced binary interactions

POLYMER ENGINEERING & SCIENCE, Issue 3 2003
E. M. Woo
This study demonstrates and discusses ternary miscibility in a three-polymer blend system based on balanced binary interactions. A truly miscible ternary blend comprising poly(,-caprolactone) (PCL), poly(benzyl methacrylate) (PBzMA), and poly(vinyl methyl ether) (PVME), was discovered and reported. Miscibility with phase homogeneity (excluding the PCL crystalline domain) in a wide composition range has been demonstrated using criteria of thermal transition behavior, cloud point, and microscopy characterization. At ambient temperature, the three-polymer ternary system is completely miscible within the entire composition range (i.e., no immiscibility loop). However, at slightly elevated temperatures above the ambient. phase separation readily occurred in this originally miscible ternary blend. A quite low "lower critical solution temperature" (LCST) near 75°C was found for the ternary blend, which is much lower than any of those for the binary pairs. Balanced interactions with no offsetting ,, among the three binary pairs were a key factor leading to a ternary miscible system. [source]


pH and salt effects on interpolymer complexation via hydrogen bonding in aqueous solutions

POLYMER INTERNATIONAL, Issue 9 2004
Dr Vitaliy V Khutoryanskiy
Abstract The effect of inorganic salts addition on the complex formation of poly(acrylic acid) with various non-ionic polymers such as poly(vinyl pyrrolidone), poly(acrylamide), poly(ethylene oxide), pol(vinyl methyl ether), poly(vinyl alcohol), poly(N -isopropylacrylamide), poly(2-hydroxyethyl vinyl ether), hydroxypropylcellulose and hydroxyethylcellulose has been studied in aqueous solutions. It was found that, depending on the nature of the polymers and pH medium, addition of inorganic salts could increase or decrease the critical pH values of complexation. A new classification of interpolymer complexes based on critical pH values and ionic strength effects is suggested. Copyright © 2004 Society of Chemical Industry [source]