Vicariance

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Vicariance

  • gondwanan vicariance

  • Terms modified by Vicariance

  • vicariance analysis
  • vicariance biogeography
  • vicariance event

  • Selected Abstracts


    RIVER CAPTURE, RANGE EXPANSION, AND CLADOGENESIS: THE GENETIC SIGNATURE OF FRESHWATER VICARIANCE

    EVOLUTION, Issue 5 2006
    C. P. Burridge
    Abstract River capture is potentially a key geomorphological driver of range expansion and cladogenesis in freshwater-limited taxa. While previous studies of freshwater fish, in particular, have indicated strong relationships between historical river connections and phylogeographic pattern, their analyses have been restricted to single taxa and geological hypotheses were typically constructed a posteriori. Here we assess the broader significance of river capture among taxa by testing multiple species for the genetic signature of a recent river capture event in New Zealand. During the Quaternary an upper tributary of the Clarence River system was diverted into the headwaters of the Wairau River catchment. Mitochondrial DNA (control region and cytochrome b) sequencing of two native galaxiid fishes (Galaxias vulgaris and Galaxias divergens) supports headwater exchange: populations from the Clarence and Wairau Rivers are closely related sister-groups, whereas samples from the geographically intermediate Awatere River are genetically divergent. The upland bully Gobiomorphus breviceps (Eleotridae), in contrast, lacks a genetic signature of the capture event. We hypothesize that there is an increased likelihood of observing genetic signatures from river capture events when they facilitate range expansion, as is inferred for the two galaxiid taxa studied here. When river capture merely translocates genetic lineages among established populations, by contrast, we suggest that the genetic signature of capture is less likely to be retained, as might be inferred for G. breviceps. Rates of molecular evolution calibrated against this recent event were elevated relative to traditional estimates, consistent with the contribution of polymorphisms to branch lengths at shallow phylogenetic levels prior to fixation by purifying selection and drift. [source]


    VICARIANCE AND DISPERSAL ACROSS BAJA CALIFORNIA IN DISJUNCT MARINE FISH POPULATIONS

    EVOLUTION, Issue 7 2003
    Giacomo Bernardi
    Abstract., Population disjunctions, as a first step toward complete allopatry, present an interesting situation to study incipient speciation. The geological formation of the Baja California Peninsula currently divides 19 species of fish into disjunct populations that are found on its Pacific Coast and in the northern part of the Gulf of California (also called the Sea of Cortez), but are absent from the Cape (Cabo San Lucas) region. We studied the genetic makeup of disjunct populations for 12 of these 19 fish species. Phylogeographic patterns for the 12 species can be separated into two major classes: a first group (eight species) showed reciprocal monophyly and high genetic divergence between disjunct populations. A second group (four species) displayed what appeared to be panmictic populations. Population structure between Pacific Coast populations, across the Punta Eugenia biogeographic boundary, was also evaluated. While dispersal potential (inferred by pelagic larval duration) was a poor predictor of population structure between Gulf of California and Pacific populations, we found that population genetic subdivision along the Pacific Coast at Punta Eugenia was always positively correlated with differentiation between Pacific and Gulf of California populations. Vicariant events, ongoing gene flow, and ecological characteristics played essential roles in shaping the population structures observed in this study. [source]


    Disjunct distributions in Gerris species (Insecta: Hemiptera: Gerridae): an analysis based on spatial and taxonomic patterns of genetic diversity

    JOURNAL OF BIOGEOGRAPHY, Issue 1 2010
    M.-C. Gagnon
    Abstract Aim, To perform a comparative analysis of distribution and genetic diversity in three closely related water strider species (Gerris) in order to shed light on a putative disjunct distribution in Gerris gillettei. Location, Canada and the western United States. Methods, Entomological collections from Canada and the United States were surveyed for records of Gerris pingreensis, G. gillettei and Gerris incognitus in order to establish the distribution range of each species. Using samples from present populations, mitochondrial and nuclear DNA sequence variation were used to construct minimum-spanning networks. Distribution patterns and genetic diversity were then compared among species. Results, Our results showed that G. incognitus is a genetically distinct species with an unsuspected disjunct distribution. Gerris pingreensis and G. gillettei were found to share genetic polymorphism and they displayed spatial differences only in terms of haplotype distribution, suggesting that they form a single species. Main conclusions, Distributional and molecular information uncover unusual distribution patterns and underline taxonomic uncertainty in a group of three closely related Gerris species. Vicariance and failure to recolonize following the last glaciation could explain the G. incognitus disjunction. Morphological and DNA-based species identifications suggest different post-glacial recolonization processes for G. pingreensis and G. gillettei. The putative discontinuous range of G. gillettei may be explained as disjunct phenotypes of a single species. [source]


    The biogeography of Gunnera L.: vicariance and dispersal

    JOURNAL OF BIOGEOGRAPHY, Issue 7 2003
    Livia Wanntorp
    Abstract Aim The genus Gunnera is distributed in South America, Africa and the Australasian region, a few species reaching Hawaii and southern Mexico in the North. A cladogram was used to (1) discuss the biogeography of Gunnera and (2) subsequently compare this biogeographical pattern with the geological history of continents and the patterns reported for other Southern Hemisphere organisms. Location Africa, northern South America, southern South America, Tasmania, New Zealand, New Guinea/Malaya, Hawaii, North America, Antarctica. Methods A phylogenetic analysis of twenty-six species of Gunnera combining morphological characters and new as well as published sequences of the ITS region, rbcL and the rps16 intron, was used to interpret the biogeographical patterns in Gunnera. Vicariance was applied in the first place and dispersal was only assumed as a second best explanation. Results The Uruguayan/Brazilian Gunnera herteri Osten (subgenus Ostenigunnera Mattfeld) is sister to the rest of the genus, followed sequentially upwards by the African G. perpensa L. (subgenus Gunnera), in turn sister to all other, American and Australasian, species. These are divided into two clades, one containing American/Hawaiian species, the other containing all Australasian species. Within the Australasian clade, G. macrophylla Blume (subgenus Pseudogunnera Schindler), occurring in New Guinea and Malaya, is sister to a clade including the species from New Zealand and Tasmania (subgenus Milligania Schindler). The southern South American subgenus Misandra Schindler is sister to a clade containing the remaining American, as well as the Hawaiian species (subgenus Panke Schindler). Within subgenus Panke, G. mexicana Brandegee, the only North American species in the genus, is sister to a clade wherein the Hawaiian species are basal to all south and central American taxa. Main conclusions According to the cladogram, South America appears in two places, suggesting an historical explanation for northern South America to be separate from southern South America. Following a well-known biogeographical pattern of vicariance, Africa is the sister area to the combined southern South America/Australasian clade. Within the Australasian clade, New Zealand is more closely related to New Guinea/Malaya than to southern South America, a pattern found in other plant cladograms, contradictory to some of the patterns supported by animal clades and by the geological hypothesis, respectively. The position of the Tasmanian G. cordifolia, nested within the New Zealand clade indicates dispersal of this species to Tasmania. The position of G. mexicana, the only North American species, as sister to the remaining species of subgenus Panke together with the subsequent sister relation between Hawaii and southern South America, may reflect a North American origin of Panke and a recolonization of South America from the north. This is in agreement with the early North American fossil record of Gunnera and the apparent young age of the South American clade. [source]


    Cladistic biogeography and the art of discovery

    JOURNAL OF BIOGEOGRAPHY, Issue 4 2002
    Malte C. Ebach
    Aims Cladistic biogeography is about discovering geographical congruence. The agreement of several taxon-area cladograms (TACs) rarely yields a perfect result. Areas may overlap, taxa may not be evenly distributed, and thus, ambiguity may be prevalent in the data. Ambiguity is incongruence and may be resolved by reducing paralogy and resolving potential information. Recently, several new approaches in cladistic biogeography [i.e. Brooks parsimony analysis (BPA), Assumption 0] interpret ambiguity as congruence. These methods are problematic, as they are generational. Methods constructed under the generation paradigm are flawed concepts that are immunized from falsifying evidence. A critique of modified BPA reveals that taking an evolutionary stance in biogeography leads to flaws in implementation. Methods Area cladistics is a new development in cladistic biogeography. Area cladistics adopts paralogy-free subtree analysis using Assumption 2, to discover the relative positions of continents through time. Results Geographical congruence is the result of allopatric (geographical) speciation. Vicariance, dispersal and combinations of both, are recognized causes for allopatric speciation. Area cladistics highlights the concept that all these events occur in response to geological changes (e.g. continental drift) either directly, by geographical boundaries, or indirectly, at the level of ocean currents. Samples of chosen examples all respond to the geological process. The examples include Ordovician,Silurian and Lower Devonian trilobites to yield a general areagram which is a representational branching diagram that depicts the relationships of areas. Main conclusion Finding one common biogeographical pattern from several unrelated groups is a qualitative approach to interpret the positions of continental margins through time. Area cladistics is not a substitute for palaeomaps that are derived from palaeomagnetic data, but general areagrams adding to the body of knowledge that yields more precise interpretations of the earth's past. [source]


    Inter-ocean dispersal is an important mechanism in the zoogeography of hakes (Pisces: Merluccius spp.)

    JOURNAL OF BIOGEOGRAPHY, Issue 6 2001
    W. Stewart Grant
    Aim To present new genetic data and to review available published genetic data that bear on the phylogeny of hakes in the genus Merluccius. To construct a zoogeographical model from a summary phylogenetic tree with dated nodes. To search for an explanation of antitropical distributions in hakes. To assess peripheral isolate, centrifugal and vicariance models of speciation in view of the molecular phylogeny and zoogeography of hakes. Locations Northern and southern Atlantic Ocean, eastern Pacific Ocean, South Pacific Ocean. Methods Electrophoretic analysis of 20 allozyme loci in 10 species of hakes. Phylogenetic tree construction with parsimony and bootstrap methods. Reanalysis of previous genetic data. Analysis of zoogeographical patterns with geographical distributions of molecular genetic markers. Results Phylogenetic analyses of new and previous allozyme data and previous mitochondrial DNA data indicate a deep genetic partition between Old- and New-World hakes with genetic distances corresponding to 10,15 Myr of separation. This time marks a widening rift between Europe and North America and a rapid drop in ocean temperatures that subdivided an ancestral population of North Atlantic hake. Two Old-World clades spanning the equator include pairs of sister taxa separated by tropical waters. Divergence times between these pairs of sister-taxa variously date to the early Pliocene and late Pleistocene. Amongst New-World hakes, pairs of sister taxa are separated by equatorial waters, by the Southern Ocean, and by the Panama Isthmus. These genetic separations reflect isolation by the rise of the Isthmus 3,4 Ma and by Pliocene and Pleistocene dispersals. Pairs of species occurring in sympatry or parapatry in six regions do not reflect sister-species relationships, but appear to reflect allopatric divergence and back dispersals of descendent species. Some geographically isolated regional populations originating within the last few hundreds of thousands of years merit subspecies designations. Conclusions Vicariance from tectonic movement of continental plates or ridge formation cannot account for the disjunct distributions of most hake sister taxa. Molecular genetic divergences place the origin of most hake species diversity in the last 2,3 Myr, a period of negligible tectonic activity. Distributions of many hake species appear to have resulted from dispersals and back dispersals across both warm equatorial waters and cool waters in the Southern Ocean, driven by oscillations in climate and ocean temperatures. Genetic and ecological divergence prevents hybridization and competitive exclusion between sympatric species pairs in six regions. Sister-taxa relationships and estimates of divergence are consistent with the modified peripheral isolate model of speciation in which vicariances, range expansions and contractions, dispersals and founder events lead to isolated populations that subsequently diverge to form new species. [source]


    Vicariance or dispersal: the use of natural historical data to test competing hypotheses of disjunction on the Tyrrhenian coast

    JOURNAL OF BIOGEOGRAPHY, Issue 1 2001
    George F. Estabrook
    Aim To illustrate the use of natural historical data to evaluate vicariance and dispersal as hypotheses competing to explain disjunct populations. Location Nine disjunct areas on the margin of the Tyrrhenian basin of the Mediterranean Sea. Methods First describe how each hypothesized mechanism might explain the observed morphological variation in the model species complex, Genista ephedroides (Fabaceae); then confront the hypotheses with natural historical data including geology, oxygen isotopes, palynology, macro-, micro- and nano-fossils, and sea level changes, and with the ecological tolerances of the model species complex. Results Dispersal seems the more credible explanation. Main conclusion Patterns of morphological (or other) variation among related disjunct taxa can fit both vicariance and dispersal hypotheses. However they can possibly be distinguished by considering natural historical data. [source]


    The phylogeny of the Pantropical genus Arrhipis Bonvouloir (Coleoptera, Eucnemidae)

    CLADISTICS, Issue 1 2010
    Lena Brüstle
    The phylogeny of the genus Arrhipis Bonvouloir (Coleoptera, Eucnemidae) is clarified with a cladistic analysis based on five molecular markers and morphology. Sixteen species from Africa, America, Asia, and Australia are included in the analysis. Two separate Asian clades are recovered, one of them being the sister group to a clade with the American and African species. With the exception of the continental south-east Asian species, all Gondwanan regions have monophyletic faunas. According to the present data, the continental south-east Asian fauna comprises two monophyletic groups, one of which is the sister group to African and American species. Vicariance seems to be the logical explanation for the distribution of these lignicolous beetles. © The Willi Hennig Society 2009. [source]


    Representing genetic variation as continuous surfaces: an approach for identifying spatial dependency in landscape genetic studies

    ECOGRAPHY, Issue 6 2008
    Melanie A. Murphy
    Landscape genetics, an emerging field integrating landscape ecology and population genetics, has great potential to influence our understanding of habitat connectivity and distribution of organisms. Whereas typical population genetics studies summarize gene flow as pairwise measures between sampling localities, landscape characteristics that influence population genetic connectivity are often continuously distributed in space. Thus, there are currently gaps in both the ability to analyze genotypic data in a continuous spatial context and our knowledge of expected of landscape genetic structure under varying conditions. We present a framework for generating continuous "genetic surfaces", evaluate their statistical properties, and quantify statistical behavior of landscape genetic structure in a simple landscape. We simulated microsatellite genotypes under varying parameters (time since vicariance, migration, effective population size) and used ancestry (q) values from STRUCTURE to interpolate a genetic surface. Using a spatially adjusted Pearson's correlation coefficient to test the significance of landscape variable(s) on genetic structure we were able to detect landscape genetic structure on a contemporary time scale (,5 generations post vicariance, migration probability ,0.10) even when population differentiation was minimal (FST,0.00015). We show that genetic variation can be significantly correlated with geographic distance even when genetic structure is due to landscape variable(s), demonstrating the importance of testing landscape influence on genetic structure. Finally, we apply genetic surfacing to analyze an empirical dataset of black bears from northern Idaho USA. We find black bear genetic variation is a function of distance (autocorrelation) and habitat patch (spatial dependency), consistent with previous results indicating genetic variation was influenced by landscape by resistance. These results suggest genetic surfaces can be used to test competing hypotheses of the influence of landscape characteristics on genetic structure without delineation of categorical groups. [source]


    Tooth row counts, vicariance, and the distribution of the sand tiger shark Carcharias taurus

    ECOGRAPHY, Issue 5 2003
    Luis O. Lucifora
    Geographic variation in tooth row counts among sand tiger sharks Carcharias taurus (Chondrichthyes), from the SW Atlantic, NW Atlantic and the East China Sea is analyzed in this paper. We found significant differences between sand tigers from the SW Atlantic (Southern Hemisphere population) and each of the other two (Northern Hemisphere) regions in the number of upper lateral tooth rows, and between individuals from the SW Atlantic and the East China Sea in the total number of upper tooth rows. Sand tiger sharks from the two Northern Hemisphere populations did not differ in any of the studied variables. Our results agree with comparisons of vertebral counts between sand tiger sharks from Southern and Northern Hemispheres. Both lines of evidence suggest that Southern and Northern Hemisphere populations of C. taurus were isolated to a larger extent than populations of the Northern Hemisphere. The fossil record of the genus Carcharias begins in the Early Cretaceous and C. taurus is certainly known since the Late Miocene. During the Miocene, the Tethys Sea separating northern and southern land masses was still present and it provided a continuous temperate shallow sea that could allow dispersal of sand tiger sharks along Northern Hemisphere seas. Independent observations on the distribution and evolutionary history of the genera Myripristis, Neoniphon, Sargocentron and Aphanius, and genetic studies on the temperate shark genus Mustelus that indicate a close relationship between the Indo-Pacific M. manazo and the Mediterranean M. asterias suggest that this hypothesis is plausible and deserves to be tested. [source]


    THE COMBINED EFFECTS OF RIVERS AND REFUGIA GENERATE EXTREME CRYPTIC FRAGMENTATION WITHIN THE COMMON GROUND SKINK (SCINCELLA LATERALIS)

    EVOLUTION, Issue 2 2010
    Nathan D. Jackson
    Rivers can act as both islands of mesic refugia for terrestrial organisms during times of aridification and barriers to gene flow, though evidence for long-term isolation by rivers is mixed. Understanding the extent to which riverine barrier effects can be heightened for populations trapped in mesic refugia can help explain maintenance and generation of diversity in the face of Pleistocene climate change. Herein, we implement phylogenetic and population genetic approaches to investigate the phylogeographic structure and history of the ground skink, Scincella lateralis, using mtDNA and eight nuclear loci. We then test several predictions of a river,refugia model of diversification. We recover 14 well-resolved mtDNA lineages distributed east,west along the Gulf Coast with a subset of lineages extending northward. In contrast, ncDNA exhibits limited phylogenetic structure or congruence among loci. However, multilocus population structure is broadly congruent with mtDNA patterns and suggests that deep coalescence rather than differential gene flow is responsible for mtDNA,ncDNA discordance. The observed patterns suggest that most lineages originated from population vicariance due to riverine barriers strengthened during the Plio,Pleistocene by a climate-induced coastal distribution. Diversification due to rivers is likely a special case, contingent upon other environmental or biological factors that reinforce riverine barrier effects. [source]


    THE PHYLOGENETIC PATTERN OF SPECIATION AND WING PATTERN CHANGE IN NEOTROPICAL ITHOMIA BUTTERFLIES (LEPIDOPTERA: NYMPHALIDAE)

    EVOLUTION, Issue 7 2006
    Chris D. Jiggins
    Abstract Species level phylogenetic hypotheses can be used to explore patterns of divergence and speciation. In the tropics, speciation is commonly attributed to either vicariance, perhaps within climate-induced forest refugia, or ecological speciation caused by niche adaptation. Mimetic butterflies have been used to identify forest refugia as well as in studies of ecological speciation, so they are ideal for discriminating between these two models. The genus Ithomia contains 24 species of warningly colored mimetic butterflies found in South and Central America, and here we use a phylogenetic hypothesis based on seven genes for 23 species to investigate speciation in this group. The history of wing color pattern evolution in the genus was reconstructed using both parsimony and likelihood. The ancestral pattern for the group was almost certainly a transparent butterfly, and there is strong evidence for convergent evolution due to mimicry. A punctuationist model of pattern evolution was a significantly better fit to the data than a gradualist model, demonstrating that pattern changes above the species level were associated with cladogenesis and supporting a model of ecological speciation driven by mimicry adaptation. However, there was only one case of sister species unambiguously differing in pattern, suggesting that some recent speciation events have occurred without pattern shifts. The pattern of geographic overlap between clades over time shows that closely related species are mostly sympatric or, in one case, parapatric. This is consistent with modes of speciation with ongoing gene flow, although rapid range changes following allopatric speciation could give a similar pattern. Patterns of lineage accumulation through time differed significantly from that expected at random, and show that most of the extant species were present by the beginning of the Pleistocene at the latest. Hence Pleistocene refugia are unlikely to have played a major role in Ithomia diversification. [source]


    PHYLOGEOGRAPHY AND DEMOGRAPHY OF SYMPATRIC SISTER SURFPERCH SPECIES, EMBIOTOCA JACKSONI AND E. LATERALIS ALONG THE CALIFORNIA COAST: HISTORICAL VERSUS ECOLOGICAL FACTORS

    EVOLUTION, Issue 2 2005
    Glacomo Bernardi
    Abstract With 18 closely related endemic species that radiated in a diversity of ecological niches, the California surfperches (Embiotocidae) species flock is a good candidate for the study of sympatric speciation. Resource partitioninghas been suggested as an important driving force in the radiation of the surfperch family. Within the family, two congeneric sister species, Embiotoca jacksoni and E. lateralis, are known to compete strongly for a preferred singleood resource and may be used as a model of ecological interactions for the family. Along the California coast, the distribution of the two species differs. Embiotoca jacksoni has a continuous range, whereas E. lateralis shows a disjunction with a distribution gap in the Southern California Bight. Two hypotheses may explain this disjunct distribution. Ecological competition may have displaced E. lateralis in favor of E. jacksoni. Alternatively, a common vicariant event may have separated the species into northern and southern populations, followed by secondary contactin E. jacksoni but not in E. lateralis. The two hypotheses predict different phylogeographic and demographic signatures. Using a combined phylogeographic and coalescent approach based on mitochondrial control region data, we show that vicariance can only account for a portion of the observed divergences. Our results are compatible with a significant role played by ecological competition in the southern range of the species. [source]


    PHYLOGEOGRAPHIC STRUCTURE AND CRYPTIC SPECIATION IN THE TRANS-ANTARCTIC MOSS PYRRHOBRYUM MNIOIDES

    EVOLUTION, Issue 2 2003
    Stuart F. McDaniel
    Abstract Many bryophyte species have distributions that span multiple continents. The hypotheses historically advanced to explain such distributions rely on either long-distance spore dispersal or slow rates of morphological evolution following ancient continental vicariance events. We use phylogenetic analyses of DNA sequence variation at three chloroplast loci (atpB-rbcL spacer, rps4 gene, and trnL intron and 3,spacer) to examine these two hypotheses in the trans-Antarctic moss Pyrrhobryum mnioides. We find: (1) reciprocal monophyly of Australasian and South American populations, indicating a lack of intercontinental dispersal; (2) shared haplotypes between Australia and New Zealand, suggesting recent or ongoing migration across the Tasman Sea; and (3) reciprocal monophyly among Patagonian and neotropical populations, suggesting no recent migration along the Andes. These results corroborate experimental work suggesting that spore features may be critical determinants of species range. We use the mid-Miocene development of the Atacama Desert, 14 million years ago, to calibrate a molecular clock for the tree. The age of the trans-Antarctic disjunction is estimated to be 80 million years ago, consistent with Gondwanan vicariance, making it among the most ancient documented cases of cryptic speciation. These data are in accord with niche conservatism, but whether the morphological stasis is a product of stabilizing selection or phylogenetic constraint is unknown. [source]


    Genetic structure and gene flow in wild beet populations: the potential influence of habitat on transgene spread and risk assessment

    JOURNAL OF APPLIED ECOLOGY, Issue 6 2006
    A. N. CURETON
    Summary 1The consequences of the movement of transgenes from genetically modified (GM) crops into wild populations of plants continues to be of concern to ecologists and conservationists because of the possible threat posed to those populations in terms of their continued survival and because of the further knock-on effects that might occur to habitats in which they occur. 2We examined five UK sea beet Beta vulgaris ssp. maritima populations from each of two major habitat types, cliff top and drift line. We assessed population genetic parameters, genetic diversity, gene flow, population differentiation and isolation by distance, to enable determination of the likelihood and consequences of spread to wild populations of genes from cultivated sugar beet group Beta vulgaris ssp. vulgaris, which could in the future be transgenic. 3Drift line populations were more diverse than cliff top populations and also showed greater levels of gene flow. 4Isolation by distance was identified in both habitats, but the relationship between genetic and geographical distance was detectable over longer distances for drift line populations. However, clear indications of vicariance (the subdivision of a population into distinct taxa by the appearance of a geological barrier) between cliff and drift line populations were also evident, because of the restriction of gene flow between the two habitats occurring more in one direction than the other. 5Synthesis and applications. The likelihood of transgene spread from crop to wild populations is habitat dependent and conservation management decisions could therefore vary from one population to another, for example water courses were found to facilitate seed dispersal. This should be taken into account when estimating isolation distances for GM beet, and when predicting transgene frequencies (exposure estimates) for environmental risk assessments of GM beet. [source]


    Phylogeographic analysis detects congruent biogeographic patterns between a woodland agamid and Australian wet tropics taxa despite disparate evolutionary trajectories

    JOURNAL OF BIOGEOGRAPHY, Issue 8 2010
    Danielle L. Edwards
    Abstract Aim, To test the congruence of phylogeographic patterns and processes between a woodland agamid lizard (Diporiphora australis) and well-studied Australian wet tropics fauna. Specifically, to determine whether the biogeographic history of D. australis is more consistent with a history of vicariance, which is common in wet tropics fauna, or with a history of dispersal with expansion, which would be expected for species occupying woodland habitats that expanded with the increasingly drier conditions in eastern Australia during the Miocene,Pleistocene. Location, North-eastern Australia. Methods, Field-collected and museum tissue samples from across the entire distribution of D. australis were used to compile a comprehensive phylo-geographic dataset based on c. 1400 bp of mitochondrial DNA (mtDNA), incorporating the ND2 protein-coding gene. We used phylogenetic methods to assess biogeographic patterns within D. australis and relaxed molecular clock analyses were conducted to estimate divergence times. Hierarchical Shimodaira,Hasegawa tests were used to test alternative topologies representing vicariant, dispersal and mixed dispersal/vicariant biogeographic hypotheses. Phylogenetic analyses were combined with phylogeographic analyses to gain an insight into the evolutionary processes operating within D. australis. Results, Phylogenetic analyses identified six major mtDNA clades within D. australis, with phylogeographic patterns closely matching those seen in many wet tropics taxa. Congruent phylogeographic breaks were observed across the Black Mountain Corridor, Burdekin and St Lawrence Gaps. Divergence amongst clades was found to decrease in a north,south direction, with a trend of increasing population expansion in the south. Main conclusions, While phylogeographic patterns in D australis reflect those seen in many rain forest fauna of the wet tropics, the evolutionary processes underlying these patterns appear to be very different. Our results support a history of sequential colonization of D. australis from north to south across major biogeographic barriers from the late Miocene,Pleistocene. These patterns are most likely in response to expanding woodland habitats. Our results strengthen the data available for this iconic region in Australia by exploring the understudied woodland habitats. In addition, our study shows the importance of thorough investigations of not only the biogeographic patterns displayed by species but also the evolutionary processes underlying such patterns. [source]


    Molecular clocks keep dispersal hypotheses afloat: evidence for trans-Atlantic rafting by rodents

    JOURNAL OF BIOGEOGRAPHY, Issue 2 2010
    Diane L. Rowe
    Abstract Aim, In order to resolve disputed biogeographical histories of biota with Gondwanan continental distributions, and to assess the null hypothesis of vicariance, it is imperative that a robust geological time-frame be established. As an example, the sudden and coincident appearance of hystricognath rodents (Rodentia: Hystricognathi) on both the African and South American continents has been an irreconcilable controversy for evolutionary biologists, presenting enigmas for both Gondwanan vicariance and Late Eocene dispersal hypotheses. In an attempt to resolve this discordance, we aim to provide a more robust phylogenetic hypothesis and improve divergence-date estimates, which are essential to assessing the null hypothesis of vicariance biogeography. Location, The primary centres of distribution are in Africa and South America. Methods, We implemented parsimony, maximum-likelihood and Bayesian methods to generate a phylogeny of 37 hystricognath taxa, the most comprehensive taxonomic sampling of this group to date, on the basis of two nuclear gene regions. To increase phylogenetic resolution at the basal nodes, these data were combined with previously published data for six additional nuclear gene regions. Divergence dates were estimated using two relaxed-molecular-clock methods, Bayesian multidivtime and nonparametric rate smoothing. Results, Our data do not support reciprocal monophyly of African and South American lineages. Indeed, Old World porcupines (i.e. Hystricomorpha) appear to be more closely related to New World lineages (i.e. Caviomorpha) than to other Old World families (i.e. Bathyergidae, Petromuridae and Thryonomyidae). The divergence between the monophyletic assemblage of South American lineages and its Old World ancestor was estimated to have occurred c. 50 Ma. Main conclusions, Our phylogenetic hypothesis and divergence-date estimates are strongly at odds with Gondwanan-vicariance isolating mechanisms. In contrast, our data suggest that transoceanic dispersal has played a significant role in governing the contemporary distribution of hystricognath rodents. Molecular-clock analyses imply a trans-Tethys dispersal event, broadly confined to the Late Cretaceous, and trans-Atlantic dispersal within the Early Eocene. Our analyses also imply that the use of the oldest known South American rodent fossil as a calibration point has biased molecular-clock inferences. [source]


    Are the Northern Andes a species pump for Neotropical birds?

    JOURNAL OF BIOGEOGRAPHY, Issue 2 2010
    Phylogenetics, biogeography of a clade of Neotropical tanagers (Aves: Thraupini)
    Abstract Aim, We used mitochondrial DNA sequence data to reconstruct the phylogeny of a large clade of tanagers (Aves: Thraupini). We used the phylogeny of this Neotropical bird group to identify areas of vicariance, reconstruct ancestral zoogeographical areas and elevational distributions, and to investigate the correspondence of geological events to speciation events. Location, The species investigated are found in 18 of the 22 zoogeographical regions of South America, Central America and the Caribbean islands; therefore, we were able to use the phylogeny to address the biogeographical history of the entire region. Methods, Molecular sequence data were gathered from two mitochondrial markers (cytochrome b and ND2) and analysed using Bayesian and maximum-likelihood approaches. Dispersal,vicariance analysis (DIVA) was used to reconstruct zoogeographical areas and elevational distributions. A Bayesian framework was also used to address changes in elevation during the evolutionary history of the group. Results, Our phylogeny was similar to previous tanager phylogenies constructed using fewer species; however, we identified three genera that are not monophyletic and uncovered high levels of sequence divergence within some species. DIVA identified early diverging nodes as having a Northern Andean distribution, and the most recent common ancestor of the species included in this study occurred at high elevations. Most speciation events occurred either within highland areas or within lowland areas, with few exchanges occurring between the highlands and lowlands. The Northern Andes has been a source for lineages in other regions, with more dispersals out of this area relative to dispersals into this area. Most of the dispersals out of the Northern Andes were dispersals into the Central Andes; however, a few key dispersal events were identified out of the Andes and into other zoogeographical regions. Main conclusions, The timing of diversification of these tanagers correlates well with the main uplift of the Northern Andes, with the highest rate of speciation occurring during this timeframe. Central American tanagers included in this study originated from South American lineages, and the timing of their dispersal into Central America coincides with or post-dates the completion of the Panamanian isthmus. [source]


    Use of dispersal,vicariance analysis in biogeography , a critique

    JOURNAL OF BIOGEOGRAPHY, Issue 1 2010
    Ullasa Kodandaramaiah
    Abstract Aim, Analytical methods are commonly used to identify historical processes of vicariance and dispersal in the evolution of taxa. Currently, dispersal,vicariance analysis implemented in the software diva is the most widely used method. Despite some recognized shortcomings of the method, it has been treated as error-free in many cases and used extensively as the sole method to reconstruct histories of taxa. In light of this, an evaluation of the limitations of the method is needed, especially in relation to several newer alternatives. Methods, In an approach similar to simulation studies in phylogenetics, I use hypothetical taxa evolving in specific geological scenarios and test how well diva reconstructs their histories. Results,diva reconstructs histories accurately when evolution has been simple; that is, where speciation is driven mainly by vicariance. Ancestral areas are wrongly identified under several conditions, including complex patterns of dispersals and within-area speciation events. Several potentially serious drawbacks in using diva for inferences in biogeography are discussed. These include the inability to distinguish between contiguous range expansions and across-barrier dispersals, a low probability of invoking extinctions, incorrect constraints set on the maximum number of areas by the user, and analysing the ingroup taxa without sister groups. Main conclusions, Most problems with inferences based on diva are linked to the inflexibility and simplicity of the assumptions used in the method. These are frequently invalid, resulting in spurious reconstructions. I argue that it might be dangerous to rely solely on diva optimization to infer the history of a group. I also argue that diva is not ideally suited to distinguishing between dispersal and vicariance because it cannot a priori take into account the age of divergences relative to the timing of barrier formation. I suggest that other alternative methods can be used to corroborate the findings in diva, increasing the robustness of biogeographic hypotheses. I compare some important alternatives and conclude that model-based approaches are promising. [source]


    Out of the Palaeotropics?

    JOURNAL OF BIOGEOGRAPHY, Issue 4 2009
    Historical biogeography, diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae
    Abstract Aim, The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. Location, Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods, We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance-based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results, The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa,Australia, Africa,India and southern South America,Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae. Transitions to conifers probably occurred no earlier than 65 Ma. Main conclusions, The Inocybaceae initially diversified no later than the Cretaceous in Palaeotropical settings, in association with angiosperms. Diversification within major clades of the family accelerated during the Palaeogene in north and south temperate regions, whereas several relictual lineages persisted in the tropics. Both vicariance and dispersal patterns are detected. Species from Neotropical and south temperate regions are largely derived from immigrant ancestors from north temperate or Palaeotropical regions. Transitions to conifer hosts occurred later, probably during the Palaeogene. [source]


    ORIGINAL ARTICLE: Coalescent analyses support multiple mainland-to-island dispersals in the evolution of Malagasy Triaenops bats (Chiroptera: Hipposideridae)

    JOURNAL OF BIOGEOGRAPHY, Issue 6 2008
    Amy L. Russell
    Abstract Aim, We investigate the directionality of mainland-to-island dispersals, focusing on a case study of an African-Malagasy bat genus, Triaenops (Hipposideridae). Taxa include T. persicus from east Africa and three Triaenops species from Madagascar (T. auritus, T. furculus, and T. rufus). The evolution of this bat family considerably post-dated the tectonic division of Madagascar from Africa, excluding vicariance as a viable hypothesis. Therefore, we consider three biogeographical scenarios to explain these species' current ranges: (A) a single dispersal from Africa to Madagascar with subsequent speciation of the Malagasy species; (B) multiple, unidirectional dispersals from Africa to Madagascar resulting in multiple, independent Malagasy lineages; or (C) early dispersal of a proto-species from Africa to Madagascar, with later back-dispersal of a descendant Malagasy taxon to Africa. Location, East Africa, Madagascar, and the Mozambique Channel. Methods, We compare the utility of phylogenetic and coalescent methodologies to address the question of directionality in a mainland-to-island dispersal event for recently diverged taxa. We also emphasize the application of biologically explicit demographic systems, such as the non-equilibrium isolation-with-migration model. Here, these methods are applied to a four-species haploid genetic data set, with simulation analyses being applied to validate this approach. Results, Coalescent simulations favour scenario B: multiple, unidirectional dispersals from Africa to Madagascar resulting in multiple, independent Malagasy bat lineages. From coalescent dating, we estimate that the genus Triaenops was still a single taxon approximately 2.25 Ma. The most recent Africa to Madagascar dispersal occurred much more recently (c. 660 ka), and led to the formation of the extant Malagasy species, T. rufus. Main conclusions, Haploid genetic data from four species of Triaenops are statistically most consistent with multiple, unidirectional dispersals from mainland Africa to Madagascar during the late Pleistocene. [source]


    ORIGINAL ARTICLE: Cycads in the insular South-west Pacific: dispersal or vicariance?

    JOURNAL OF BIOGEOGRAPHY, Issue 6 2008
    Gunnar Keppel
    Abstract Aim, Cycads constitute an ancient plant group that is generally believed to disperse poorly. However, one group of cycads (subsection Rumphiae) is thought to have dispersed relatively recently from a Malesian source area westwards to East Africa and eastwards into the Pacific, using a floatation-facilitating layer in their seeds. We use morphological and allozyme characters to investigate the relationships among the species within this group and to deduce whether the wide distribution was achieved by recent dispersal (as evidenced by high genetic similarity) or more distant vicariance events (high genetic differentiation). Location, We examined specimens collected throughout the range of subsection Rumphiae, from East Africa through Southeast Asia to Tonga in the South-west Pacific. Methods, We investigated relationships within subsection Rumphiae of the genus Cycas by analysing 18 variable (11 informative) morphological characters and 22 allozyme loci for seven of the 10 species currently assigned to this taxon. Results, Distinctive morphological characters are few and fail to resolve relationships within the group. Allozyme data show that species within this subsection are closely related and suggest that there are two groups within the subsection, one comprising Cycas thouarsii (East Africa) and C. edentata (the Philippines), and the other the remaining species (from Malesia and the Pacific). The Australian species C. silvestris is sister to subsection Rumphiae in the morphological analysis but is closely allied to C. rumphii (nested within the subsection) in the allozyme analysis, suggesting that Rumphiae may be paraphyletic and that characters thought to be taxonomically important may need to be re-evaluated. Main conclusions, Cycads within subsection Rumphiae are closely related, and the wide distribution of this group was probably achieved through relatively recent oceanic dispersal events. Separate events probably account for the dispersal of these cycads into the Pacific and to Africa. The origin and distribution of C. silvestris (Australia) could be explained by a dispersal event from New Guinea or may have resulted from a former land connection between Australia and New Guinea. [source]


    Genetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an eastern Alpine refugium

    JOURNAL OF BIOGEOGRAPHY, Issue 12 2007
    Patrik Mráz
    Abstract Aim, The range of the subalpine species Hypochaeris uniflora covers the Alps, Carpathians and Sudetes Mountains. Whilst the genetic structure and post-glacial history of many high-mountain plant taxa of the Alps is relatively well documented, the Carpathian populations have often been neglected in phylogeographical studies. The aim of the present study is to compare the genetic variation of the species in two major European mountain systems , the Alps and the Carpathians. Location, Alps and Carpathians. Methods, The genetic variation of 77 populations, each consisting of three plants, was studied using amplified fragment length polymorphism (AFLP). Results, Neighbour joining and principal coordinate analyses revealed three well-supported phylogeographical groups of populations corresponding to three disjunct geographical regions , the Alps and the western and south-eastern Carpathians. Moreover, two further clusters could be distinguished within the latter mountain range, one consisting of populations from the eastern Carpathians and the second consisting of populations from the southern Carpathians. Populations from the Apuseni Mountains had an intermediate position between the eastern and southern Carpathians. The genetic clustering of populations into four groups was also supported by an analysis of molecular variance, which showed that most genetic variation (almost 46%) was found among these four groups. By far the highest within-population variation was found in the eastern Carpathians, followed by populations from the southern and western Carpathians. Generally, the populations from the Alps were considerably less variable and displayed substantially fewer region-diagnostic markers than those from the south-eastern Carpathians. Although no clear geographical structure was found within the Alps, based on neighbour joining or principal coordinate analyses, some trends were obvious: populations from the easternmost part were genetically more variable and, together with those from the south-western part, exhibited a higher proportion of rare AFLP fragments than populations in other areas. Moreover, the total number of AFLP fragments per population, the percentage of polymorphic loci and the proportion of rare AFLP fragments significantly decreased from east to west. Main conclusions, Deep infraspecific phylogeographical gaps between the populations from the Alps and the western and south-eastern Carpathians suggest the survival of H. uniflora in three separate refugia during the last glaciation. Our AFLP data provide molecular evidence for a long-term geographical disjunction between the eastern and western Carpathians, previously suggested from the floristic composition at the end of 19th century. It is likely that Alpine populations survived the Last Glacial in the eastern part of the Alps, from where they rapidly colonized the rest of the Alps after the ice sheet retreated. Multiple founder effects may explain a gradual loss of genetic variation during westward colonization of the Alps. [source]


    Historical biogeography of some river basins in central Mexico evidenced by their goodeine freshwater fishes: a preliminary hypothesis using secondary Brooks parsimony analysis

    JOURNAL OF BIOGEOGRAPHY, Issue 8 2006
    Omar Domínguez-Domínguez
    Abstract Aims, Our aim was to uncover and describe patterns of historical biogeography of the main river basins in central Mexico, based on a secondary Brooks parsimony analysis (BPA) of goodeine fishes, and to understand the processes that determine them with respect to the molecular clock of the goodeines and the geological events that have taken place in the region since the Miocene. Location, The region covered in this study includes central Mexico, mostly the so-called Mesa Central of Mexico, an area argued to be a transitional zone comprising several major river drainages from their headwaters at high elevations along the Transmexican Volcanic Belt to the coast of the Gulf of Mexico and the Pacific Ocean. Methods, Based on a previous phylogenetic hypothesis regarding the Goodeidae, we built a data matrix using additive binary coding. First, we conducted a primary BPA to provide general explanations of the historical biogeography of Central Mexico. As ambiguity was found, a secondary BPA was conducted, and some areas were duplicated in order to explain the reticulated history of the area. Area cladograms were obtained by running a parsimony analysis. Instances of vicariance and non-vicariance processes were described with reference to the cladogram obtained from secondary BPA. Results, The study area was divided into 18 discrete regions. Primary BPA produced nine equally parsimonious cladograms with 129 steps, and a consistency index (CI) of 0.574. A strict consensus cladogram shows low resolution among some areas, but other area relationships are consistent. For secondary BPA, five of the 18 regions were duplicated (LEA, COT, AYU, CUT, PAN); one was triplicated (BAL); and one was quadruplicated (AME), suggesting that the pattern of distribution of species in these areas reflects multiple independent events. These areas correspond with the regions exhibiting the highest levels of diversification and the most complex geological history, and those for which river piracy events or basin connections have been proposed. The secondary BPA produced a single most parsimonious cladogram with 118 steps, and a CI of 0.858. This cladogram shows that none of the duplicated areas are nested together, reinforcing the idea of a reticulated history of the areas and not a single vicariant event. Main conclusions, Although our results are preliminary and we cannot establish this as a general pattern, as the BPA is based on a single-taxon cladogram, resolution obtained in the secondary BPA provides some insights regarding the historical biogeography of this group of fishes in river basins of central Mexico. Secondary BPA indicates that the historical biogeography of central Mexico, as shown by their goodeine freshwater fishes, is complex and is a result of a series of vicariant and non-vicariant events such as post-dispersal speciation and post-speciation dispersal. [source]


    Panbiogeography of Nothofagus (Nothofagaceae): analysis of the main species massings

    JOURNAL OF BIOGEOGRAPHY, Issue 6 2006
    Michael Heads
    Abstract Aim, The aim of this paper is to analyse the biogeography of Nothofagus and its subgenera in the light of molecular phylogenies and revisions of fossil taxa. Location, Cooler parts of the South Pacific: Australia, Tasmania, New Zealand, montane New Guinea and New Caledonia, and southern South America. Methods, Panbiogeographical analysis is used. This involves comparative study of the geographic distributions of the Nothofagus taxa and other organisms in the region, and correlation of the main patterns with historical geology. Results, The four subgenera of Nothofagus have their main massings of extant species in the same localities as the main massings of all (fossil plus extant) species. These main massings are vicariant, with subgen. Lophozonia most diverse in southern South America (north of Chiloé I.), subgen. Fuscospora in New Zealand, subgen. Nothofagus in southern South America (south of Valdivia), and subgen. Brassospora in New Guinea and New Caledonia. The main massings of subgen. Brassospora and of the clade subgen. Brassospora/subgen. Nothofagus (New Guinea,New Caledonia,southern South America) conform to standard biogeographical patterns. Main conclusions, The vicariant main massings of the four subgenera are compatible with largely allopatric differentiation and no substantial dispersal since at least the Upper Cretaceous (Upper Campanian), by which time the fossil record shows that the four subgenera had evolved. The New Guinea,New Caledonia distribution of subgenus Brassospora is equivalent to its total main massing through geological time and is explained by different respective relationships of different component terranes of the two countries. Global vicariance at family level suggests that Nothofagaceae/Nothofagus evolved largely as the South Pacific/Antarctic vicariant in the breakup of a world-wide Fagales ancestor. [source]


    Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands

    JOURNAL OF BIOGEOGRAPHY, Issue 2 2006
    Robert H. Cowie
    Abstract Vicariance biogeography emerged several decades ago from the fusion of cladistics and plate tectonics, and quickly came to dominate historical biogeography. The field has since been largely constrained by the notion that only processes of vicariance and not dispersal offer testable patterns and refutable hypotheses, dispersal being a random process essentially adding only noise to a vicariant system. A consequence of this thinking seems to have been a focus on the biogeography of continents and continental islands, considering the biogeography of oceanic islands less worthy of scientific attention because, being dependent on stochastic dispersal, it was uninteresting. However, the importance of dispersal is increasingly being recognized, and here we stress its fundamental role in the generation of biodiversity on oceanic islands that have been created in situ, never connected to larger land masses. Historical dispersal patterns resulting in modern distributions, once considered unknowable, are now being revealed in many plant and animal taxa, in large part through the analysis of polymorphic molecular markers. We emphasize the profound evolutionary insights that oceanic island biodiversity has provided, and the fact that, although small in area, oceanic islands harbour disproportionately high biodiversity and numbers of endemic taxa. We further stress the importance of continuing research on mechanisms generating oceanic island biodiversity, especially detection of general, non-random patterns of dispersal, and hence the need to acknowledge oceanic dispersal as significant and worthy of research. [source]


    Incipient speciation of Catostylus mosaicus (Scyphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-east Australia

    JOURNAL OF BIOGEOGRAPHY, Issue 3 2005
    Michael N Dawson
    Abstract Aim, Phylogeography provides a framework to explain and integrate patterns of marine biodiversity at infra- and supra-specific levels. As originally expounded, the phylogeographic hypotheses are generalities that have limited discriminatory power; the goal of this study is to generate and test specific instances of the hypotheses, thereby better elucidating both local patterns of evolution and the conditions under which the generalities do or do not apply. Location, Coastal south-east Australia (New South Wales, Tasmania and Victoria), and south-west North America (California and Baja California). Methods, Phylogeographic hypotheses specific to coastal south-east Australia were generated a priori, principally from existing detailed distributional analyses of echinoderms and decapods. The hypotheses are tested using mitochondrial cytochrome c oxidase subunit I (COI) and nuclear internal transcribed spacer 1 (ITS1) DNA sequence data describing population variation in the jellyfish Catostylus mosaicus, integrated with comparable data from the literature. Results, Mitochondrial COI distinguished two reciprocally monophyletic clades of C. mosaicus (mean ± SD: 3.61 ± 0.40% pairwise sequence divergence) that were also differentiated by ITS1 haplotype frequency differences; the boundary between the clades was geographically proximate to a provincial zoogeographic boundary in the vicinity of Bass Strait. There was also limited evidence of another genetic inhomogeneity, of considerably smaller magnitude, in close proximity to a second hypothesized zoogeographic discontinuity near Sydney. Other coastal marine species also show genetic divergences in the vicinity of Bass Strait, although they are not closely concordant with each other or with reported biogeographic discontinuities in the region, being up to several hundreds of kilometres apart. None of the species studied to date show a strong phylogeographic discontinuity across the biogeographic transition zone near Sydney. Main conclusions, Patterns of evolution in the Bass Strait and coastal New South Wales regions differ fundamentally because of long-term differences in extrinsic factors. Since the late Pliocene, periods of cold climate and low sea-level segregated warm temperate organisms east or west of an emergent Bassian Isthmus resulting in population divergence and speciation; during subsequent periods of warmer and higher seas, sister taxa expanded into the Bass Strait region leading to weakly correlated phylogeographic and biogeographic patterns. The Sydney region, by contrast, has been more consistently favourable to shifts in species' ranges and long-distance movement, resulting in a lack of intra-specific and species-level diversification. Comparisons between the Sydney and Bass Strait regions and prior studies in North America suggest that vicariance plays a key role in generating coastal biodiversity and that dispersal explains many of the deviations from the phylogeographic hypotheses. [source]


    Phylogeography of the northern hogsucker, Hypentelium nigricans (Teleostei: Cypriniformes): genetic evidence for the existence of the ancient Teays River

    JOURNAL OF BIOGEOGRAPHY, Issue 8 2003
    Peter B. Berendzen
    Abstract Aim, To assess the roles of dispersal and vicariance in shaping the present distribution and diversity within Hypentelium nigricans, the northern hogsucker (Teleostei: Cypriniformes). Location, Eastern United States. Methods, Parsimony analyses, Bayesian analyses, pairwise genetic divergence and mismatch plots are used to examine patterns of genetic variation across H. nigricans. Results, Species relationships within the genus Hypentelium were consistent with previous hypotheses. However, relationships between haplotypes within H. nigricans revealed two deeply divergent groups, a clade containing haplotypes from the New and Roanoke rivers (Atlantic Slope) plus Interior Highlands and upper Mississippi River and a clade containing haplotypes from the Eastern Highlands, previously glaciated regions of the Ohio and Wabash rivers, and the Amite and Homochitto rivers of south-western Mississippi. Main conclusions, The phylogenetic history of Hypentelium was shaped by old vicariant events associated with erosion of the Blue Ridge and separation of the Mobile and Mississippi river basins. Within H. nigricans two clades existed prior to the Pleistocene; a widespread clade in the pre-glacial Teays-Mississippi River system and a clade in Cumberland and Tennessee rivers. Pleistocene events fragmented the Teays-Mississippi fauna. Following the retreat of the glaciers H. nigricans dispersed northward into previously glaciated regions. These patterns are replicated in other clades of fishes and are consistent with some of the predictions of Mayden's (Systematic Zoology, 37, 329, 1988) pre-Pleistocene vicariance hypothesis. [source]


    The biogeography of Gunnera L.: vicariance and dispersal

    JOURNAL OF BIOGEOGRAPHY, Issue 7 2003
    Livia Wanntorp
    Abstract Aim The genus Gunnera is distributed in South America, Africa and the Australasian region, a few species reaching Hawaii and southern Mexico in the North. A cladogram was used to (1) discuss the biogeography of Gunnera and (2) subsequently compare this biogeographical pattern with the geological history of continents and the patterns reported for other Southern Hemisphere organisms. Location Africa, northern South America, southern South America, Tasmania, New Zealand, New Guinea/Malaya, Hawaii, North America, Antarctica. Methods A phylogenetic analysis of twenty-six species of Gunnera combining morphological characters and new as well as published sequences of the ITS region, rbcL and the rps16 intron, was used to interpret the biogeographical patterns in Gunnera. Vicariance was applied in the first place and dispersal was only assumed as a second best explanation. Results The Uruguayan/Brazilian Gunnera herteri Osten (subgenus Ostenigunnera Mattfeld) is sister to the rest of the genus, followed sequentially upwards by the African G. perpensa L. (subgenus Gunnera), in turn sister to all other, American and Australasian, species. These are divided into two clades, one containing American/Hawaiian species, the other containing all Australasian species. Within the Australasian clade, G. macrophylla Blume (subgenus Pseudogunnera Schindler), occurring in New Guinea and Malaya, is sister to a clade including the species from New Zealand and Tasmania (subgenus Milligania Schindler). The southern South American subgenus Misandra Schindler is sister to a clade containing the remaining American, as well as the Hawaiian species (subgenus Panke Schindler). Within subgenus Panke, G. mexicana Brandegee, the only North American species in the genus, is sister to a clade wherein the Hawaiian species are basal to all south and central American taxa. Main conclusions According to the cladogram, South America appears in two places, suggesting an historical explanation for northern South America to be separate from southern South America. Following a well-known biogeographical pattern of vicariance, Africa is the sister area to the combined southern South America/Australasian clade. Within the Australasian clade, New Zealand is more closely related to New Guinea/Malaya than to southern South America, a pattern found in other plant cladograms, contradictory to some of the patterns supported by animal clades and by the geological hypothesis, respectively. The position of the Tasmanian G. cordifolia, nested within the New Zealand clade indicates dispersal of this species to Tasmania. The position of G. mexicana, the only North American species, as sister to the remaining species of subgenus Panke together with the subsequent sister relation between Hawaii and southern South America, may reflect a North American origin of Panke and a recolonization of South America from the north. This is in agreement with the early North American fossil record of Gunnera and the apparent young age of the South American clade. [source]


    Historical biogeography of scarabaeine dung beetles

    JOURNAL OF BIOGEOGRAPHY, Issue 9 2002
    Adrian L. V. Davis
    Abstract Aim, (1) To review briefly global biogeographical patterns in dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae), a group whose evolutionary history has been dominated by ecological specialization to vertebrate dung in warmer climates. (2) To develop hypotheses accounting for the evolution of these patterns. Location, Six principal biogeographical regions: Palaearctic, Oriental, Afrotropical, Australasia, Neotropical, Nearctic and five outlying islands or island groups harbouring endemic genera: Caribbean, Madagascar, Mauritius, New Caledonia, New Zealand. Methods, Major patterns of tribal, generic and species distribution are investigated using cluster analysis, ordination, parsimony analysis of endemism and track analysis. Attempts are made to resolve biogeographical patterns with findings in the fields of plate tectonics, fossil and evolutionary history, plus phylogeny of both mammals and dung beetles. Results, Because of conflict between published findings, it is uncertain at what point in time density of dinosaur dung, mammal dung or both became sufficiently great to select for specialized habits in dung beetles. However, biogeographical evidence would suggest a Mesozoic origin followed by further taxonomic radiation during the Cenozoic, possibly in response to the increasing size and diversity of mammalian dung types in South America and Afro-Eurasia. Proportional generic distribution in fourteen tribes and subtribes showed four principal biogeographical patterns: (1) southerly biased Gondwanaland distribution, (2) Americas or (3) Madagascar endemism, and (4) northerly biased, Afro-Eurasian-centred distribution with limited numbers of genera also widespread in other regions. Proportional composition of faunas in eleven geographical regions indicated three principal distributional centres, East Gondwanaland fragments, Afro-Eurasia and the Americas. These patterns probably result from three principal long-term range expansion and vicariance events (Mesozoic: Gondwanaland interchange and fragmentation, Cenozoic: Afro-Eurasian/Nearctic interchange and the Great American interchange). It is suggested that old vicariance caused by the Mesozoic fragmentation of Gondwanaland leads to a high degree of regional endemism at generic or tribal level across one or more Gondwanaland tracks. In contrast, it is suggested that the more recent Cenozoic range expansions occurred primarily towards northern regions leading to endemism primarily at species level. These Cenozoic radiations were facilitated by the re-linking of continents, either because of tectonic plate movements (Africa to Eurasia in Miocene), climatically induced sea-level change (Afro-Eurasia to Nearctic in Miocene and Pleistocene), or similar coupled with orogenics (Nearctic to Neotropical in Pliocene). Speciation has followed vicariance either because of climatic change or physical barrier development. These recent range expansions probably occurred principally along an Afro-Eurasian land track to the Nearctic and Neotropical and an Americas land track northwards from the Neotropics to the Nearctic, with limited dispersal from Eurasia to Australia, probably across a sea barrier. This accounts for the overall, spatially constrained, biogeographical pattern comprising large numbers of species-poor genera endemic to a single biogeographical region and fewer more species-rich genera, many of which show wider biogeographical distributions. In most southerly regions (Australasia, Madagascar, Neotropical), faunal composition and generic endemism is primarily dominated by elements with Gondwanaland ancestry, which is consistent with the Gondwanaland origin claimed for Scarabaeinae. In Afro-Eurasia (Palaearctic, Oriental, Afrotropical), generic endemism of monophyletically derived Afro-Eurasian and widespread lineages is centred in the Afrotropical region and faunal composition is numerically dominated by Afro-Eurasian and widespread elements. In the Nearctic region, the fauna is jointly dominated by widespread elements, derived from Afro-Eurasia, and Gondwanaland and Americas elements derived from the Neotropical region. Main conclusions, Global biogeographical patterns in scarabaeine dung beetles primarily result from Mesozoic and Cenozoic range expansion events followed by vicariance, although recent dispersal to Australia may have occurred across sea barriers. Detailed phylogenetics research is required to provide data to support dispersal/vicariance hypotheses. [source]