Home About us Contact | |||
Vivo Metabolites (vivo + metabolite)
Selected AbstractsThe use of in vitro technologies coupled with high resolution accurate mass LC-MS for studying drug metabolism in equine drug surveillanceDRUG TESTING AND ANALYSIS, Issue 1 2010James P. Scarth Abstract The detection of drug abuse in horseracing often requires knowledge of drug metabolism, especially if urine is the matrix of choice. In this study, equine liver/lung microsomes/S9 tissue fractions were used to study the phase I metabolism of eight drugs of relevance to equine drug surveillance (acepromazine, azaperone, celecoxib, fentanyl, fluphenazine, mepivacaine, methylphenidate and tripelennamine). In vitro samples were analyzed qualitatively alongside samples originating from in vivo administrations using LC-MS on a high resolution accurate mass Thermo Orbitrap Discovery instrument and by LC-MS/MS on an Applied Biosystems Sciex 5500 Q Trap. Using high resolution accurate mass full-scan analysis on the Orbitrap, the in vitro systems were found to generate at least the two most abundant phase I metabolites observed in vitro for all eight drugs studied. In the majority of cases, in vitro experiments were also able to generate the minor in vivo metabolites and sometimes metabolites that were only observed in vitro. More detailed analyses of fentanyl incubates using LC-MS/MS showed that it was possible to generate good quality spectra from the metabolites generated in vitro. These data support the suggestion of using in vitro incubates as metabolite reference material in place of in vivo post-administration samples in accordance with new qualitative identification guidelines in the 2009 International Laboratory Accreditation Cooperation-G7 (ILAC-G7) document. In summary, the in vitro and in vivo phase I metabolism results reported herein compare well and demonstrate the potential of in vitro studies to compliment, refine and reduce the existing equine in vivo paradigm. Copyright © 2010 John Wiley & Sons, Ltd. [source] Disruption effects of monophthalate exposures on inter-Sertoli tight junction in a two-compartment culture modelENVIRONMENTAL TOXICOLOGY, Issue 3 2008Yun-Hui Zhang Abstract Phthalates are suspect environmental endocrine disruptors that may affect male reproduction and development by disturbing androgen synthesis and cell,cell interactions in the seminiferous epithelium. The in vivo metabolites, monophthalates, are thought to be the active agents, and toxicant effects including testicular damage and decreased sperm motility have been described previously. In this study, the aim was to investigate the effect of monophthalates on Sertoli cells using a two-compartment cell culture model, asking whether tight junction protein structures are affected, compromising the blood-testis barrier and contributing to male-mediated toxicity. Sertoli cells were isolated from Sprague Dawley rat testes and seeded onto the filters of two-compartment wells. A Sertoli cell monolayer was allowed to form, whereupon the cultures were treated with 0, 10, 30, 150, and 600 ,mol/L monobutyl phthalate (MBP) or mono-2-ethylhexyl phthalate (MEHP) for 24 h. Effects on the tight junctions between adjacent Sertoli cells were studied by light and transmission electron microscopy, the transepithelial electrical resistance (TEER) assay, and immunofluorescence localization. Results showed that exposures to monophthalates destroyed tight junctional structure in Sertoli cell monolayers in a dose-depended manner, as evidenced by a loss of single-cell layer organization in the cultures, decline of TEER value, and decreased expression of proteins associated with tight junctions such as zonula occludens-1 (ZO-1), F-actin, and Occludin. The changes were observed at doses of 150 and 600 ,mol/L, which is 10,100 times higher relative to estimated human exposures from the environment. These results are consistent with monophthalate-induced damage to tight junctions between adjacent Sertoli cells, suggesting that damage to Sertoli cell tight junctions induced by monophthalates may be an underlying mechanism of their male-mediated reproductive toxicity. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2008. [source] ANALYSIS OF ANTIOXIDANT POTENTIAL USING A BIOASSAY BASED ON OXIDATION OF 5-(2 AMINOETHYL)BENZENE-1,2,4-TRIOL FOR SCREENING PLANT FOOD EXTRACTSJOURNAL OF FOOD BIOCHEMISTRY, Issue 4 2007YU YAO ABSTRACT Neurotoxic products including reactive quinones and oxygen species such as H2O2 are generated upon oxidation of 4-(2-aminoethyl)-1,2-benzenediol (dopamine) and 5-(2-aminoethyl)benzene-1,2,4-triol (6-OH dopamine). Moreover, neurotoxicity of 6-OH dopamine and related oxidative stress may be increased in the presence of cytochrome c (Cytc) that is released from its normal mitochondrial location. A Cytc-enhanced 6-OH dopamine oxidation reaction is presented as a model bioassay for identifying possible neuroprotective food antioxidants and their metabolites. A concentration-dependent effect was observed for Cytc upon 6-OH dopamine oxidation. Fruit/vegetable extracts, prepared from Fragaria and Pisum, were tested by this assay; a three- to fourfold greater antioxidant potency was observed for Fragaria. The results were discussed in terms of the content for antioxidant phytochemicals. In addition, potencies for these dietary antioxidants were compared to those of a related assay based on N,N,N,,N,-tetramethyl-1,4-phenylene-diamine peroxidation. PRACTICAL APPLICATIONS The bioassay presented herein is intended to be used for screening the antioxidant activities of purified dietary compounds and their in vivo metabolites, as well as crude plant extracts and other food preparations. Examples are provided by the use of fruit and vegetable extracts; and these activities arecompared with those of purified phytochemicals. Because of the potential relevance of this assay to some neurological disorders and mitochondrial dysfunctions, phytochemicals and food extracts with strong protective activities in this initial screen may be good candidates for further analyses (biochemical, cellular and animal experiments) related to such disorders e.g., related to dopaminergic neurodegeneration as discussed below. [source] Interaction between flavonoids and the blood,brain barrier: in vitro studiesJOURNAL OF NEUROCHEMISTRY, Issue 1 2003Kuresh A. Youdim Abstract There is considerable current interest in the neuroprotective effects of flavonoids. This study focuses on the potential for dietary flavonoids, and their known physiologically relevant metabolites, to enter the brain endothelium and cross the blood,brain barrier (BBB) using well-established in vitro models (brain endothelial cell lines and ECV304 monolayers co-cultured with C6 glioma cells). We report that the citrus flavonoids, hesperetin, naringenin and their relevant in vivo metabolites, as well as the dietary anthocyanins and in vivo forms, cyanidin-3-rutinoside and pelargonidin-3-glucoside, are taken up by two brain endothelial cell lines from mouse (b.END5) and rat (RBE4). In both cell types, uptake of hesperetin and naringenin was greatest, increasing significantly with time and as a function of concentration. In support of these observations we report for the first time high apparent permeability (Papp) of the citrus flavonoids, hesperetin and naringenin, across the in vitro BBB model (apical to basolateral) relative to their more polar glucuronidated conjugates, as well as those of epicatechin and its in vivo metabolites, the dietary anthocyanins and to specific phenolic acids derived from colonic biotransformation of flavonoids. The results demonstrate that flavonoids and some metabolites are able to traverse the BBB, and that the potential for permeation is consistent with compound lipophilicity. [source] Identification of circulatory and excretory metabolites of meisoindigo in rat plasma, urine and feces by high-performance liquid chromatography coupled with positive electrospray ionization tandem mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 6 2010Meng Huang Meisoindigo has been a routine therapeutic agent in the clinical treatment of chronic myelogenous leukemia in China since the 1980s. However, information relevant to in vivo metabolism of meisoindigo is absent so far. In this study, in vivo circulatory metabolites of meisoindigo in rat plasma, as well as excretory metabolites in rat urine and feces, were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Integration of multiple reaction monitoring with conventional metabolic profiling methodology was adopted to enable a more sensitive detection of in vivo metabolites. By comparing with the MS/MS spectra and retention times of the in vitro reduced metabolites, the major metabolites in rat plasma were proposed to form from 3,3, double bond reduction, whereas the minor metabolites were formed from reduction followed by N-demethylation, and reduction followed by phenyl mono-oxidation. The major metabolites in the rat urine were proposed to form from reduction followed by phenyl mono-oxidation, and its glucuronide conjugation and sulfate conjugation, whereas the minor metabolites were formed from 3,3, double bond reduction, N-demethylation, reduction followed by N-demethylation, phenyl di-oxidation, phenyl mono-oxidation and its glucuronide conjugation and sulfate conjugation. The major metabolites in the rat feces were proposed to form from reduction followed by phenyl mono-oxidation, whereas the minor metabolites were formed from reduction followed by N-demethylation, and reduction followed by phenyl di-oxidation. The phase I metabolic pathways showed a significant in vitro,in vivo correlation in rat. Copyright © 2010 John Wiley & Sons, Ltd. [source] High-throughput analysis in drug discovery: application of liquid chromatography/ion-trap mass spectrometry for simultaneous cassette analysis of ,-1a antagonists and their metabolites in mouse plasmaRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 8 2001Zongwei Cai The application of liquid chromatography/ion-trap mass spectrometry for simultaneous quantification of multiple drugs and detection of their metabolites for in vitro experiments was reported recently. In the current study, the use of these techniques was extended to in vivo pharmacokinetic (PK) studies of ,-1a antagonists. In combination with limited time-point PK, greatly increased throughput was demonstrated for the in vivo screening and investigation of in vivo,in vitro correlation. In addition to quantitative analyses, the technique allowed simultaneous detection of major in vivo metabolites without having to reanalyze the plasma samples. The drugs were individually dosed in mice intravenously via tail vein injection and the blood samples were collected 5,min and 2,h after dosing. After the plasma samples for the different drugs had been prepared separately, they were pooled for cassette analysis. The concentrations of five test compounds in the plasma samples at 2,h ranged from 36,1062,ng/mL, whereas their 5-min plasma levels were similar. From the same cassette analysis, major metabolites in the samples were also detected simultaneously through the interpretation of full-scan mass spectra. The metabolite identification confirmed the results from a previous report that the major sites of metabolism are hydroxylation of the phenyl ring not bearing the alkylsulfonamide substitutent, piperidine N-dealkylation, and N-demethylation of the alkylsulfonamide group. Copyright © 2001 John Wiley & Sons, Ltd. [source] |