Home About us Contact | |||
Vivo Bioluminescence Imaging (vivo + bioluminescence_imaging)
Selected AbstractsRapid Control of Wound Infections by Targeted Photodynamic Therapy Monitored by In Vivo Bioluminescence Imaging,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2002Michael R. Hamblin ABSTRACT The worldwide rise in antibiotic resistance necessitates the development of novel antimicrobial strategies. In this study we report on the first use of a photochemical approach to destroy bacteria infecting a wound in an animal model. Following topical application, a targeted polycationic photosensitizer conjugate between poly- l -lysine and chlorine6 penetrated the Gram (,) outer bacterial membrane, and subsequent activation with 660 nm laser light rapidly killed Escherichia coli infecting excisional wounds in mice. To facilitate real-time monitoring of infection, we used bacteria that expressed the lux operon from Photorhabdus luminescens; these cells emitted a bioluminescent signal that allowed the infection to be rapidly quantified, using a low-light imaging system. There was a light-dose dependent loss of luminescence in the wound treated with conjugate and light, not seen in untreated wounds. Treated wounds healed as well as control wounds, showing that the photodynamic treatment did not damage the host tissue. Our study points to the possible use of this methodology in the rapid control of wounds and other localized infections. [source] Understanding immune cell trafficking patterns via in vivo bioluminescence imagingJOURNAL OF CELLULAR BIOCHEMISTRY, Issue S39 2002Stefanie Mandl Abstract Cell migration is a key aspect of the development of the immune system and mediating an immune response. There is extensive and continual redistribution of cells to different anatomic sites throughout the body. These trafficking patterns control immune function, tissue regeneration, and host responses to insult. The ability to monitor the fate and function of cells, therefore, is imperative to both understanding the role of specific cells in disease processes and to devising rational therapeutic strategies. Determining the fate of immune cells and understanding the functional changes associated with migration and proliferation require effective means of obtaining in vivo measurements in the context of intact organ systems. A variety of imaging methods are available to provide structural information, such as X-ray CT and MRI, but only recently new tools have been developed that reveal cellular and molecular changes as they occur within living animals. We have pioneered one of these techniques that is based on the observations that light passes through mammalian tissues, and that luciferases can serve as internal biological sources of light in the living body. This method, called in vivo bioluminescence imaging, is a rapid and noninvasive functional imaging method that employs light-emitting reporters and external photon detection to follow biological processes in living animals in real time. This imaging strategy enables the studies of trafficking patterns for a variety of cell types in live animal models of human biology and disease. Using this approach we have elucidated the spatiotemporal trafficking patterns of lymphocytes within the body. In models of autoimmune disease we have used the migration of "pathogenic" immune cells to diseased tissues as a means to locally deliver and express therapeutic proteins. Similarly, we have determined the tempo of NK-T cell migration to neoplastic lesions and measured their life span in vivo. Using bioluminescence imaging individual groups of animals can be followed over time significantly reducing the number of animals per experiment, and improving the statistical significance of a study since changes in a given population can be studied over time. Such rapid assays that reveal cell fates in vivo will increase our basic understanding of the molecular signals that control these migratory pathways and will substantially speed up the development and evaluation of therapies. J. Cell. Biochem. Suppl. 39: 239,248, 2002. © 2002 Wiley-Liss, Inc. [source] In vivo bioluminescence imaging study to monitor ectopic bone formation by luciferase gene marked mesenchymal stem cellsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 7 2008Cristina Olivo Abstract Mesenchymal stem cells (MSCs) represent a powerful tool for applications in regenerative medicine. In this study, we used in vivo bioluminescence imaging to noninvasively investigate the fate and the contribution to bone formation of adult MSCs in tissue engineered constructs. Goat MSCs expressing GFP-luciferase were seeded on ceramic scaffolds and implanted subcutaneously in immune-deficient mice. The constructs were monitored weekly with bioluminescence imaging and were retrieved after 7 weeks to quantify bone formation by histomorphometry. With increasing amounts of seeded MSCs (from 0 to 1,×,106 MSC/scaffold), a cell-dose related increase in bioluminescence was observed at all time points, correlating with increased bone formation at 7 weeks. To investigate the relevance of MSC proliferation to bone deposition, cell-seeded scaffolds were irradiated. The irradiated cells were functional with respect to oxygen consumption but no increase in bioluminescence was observed in vivo, and only minimal bone was produced. Proliferating MSCs are likely required for initiation of bone formation in tissue engineered constructs in vivo. Bioluminescence is a useful tool to monitor cellular responses and predict bone formation in vivo. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:901,909, 2008 [source] A quantitative study of factors affecting in vivo bioluminescence imagingLUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 5 2008Kemi Cui Abstract In vivo bioluminescence imaging (BLI) has the advantages of high sensitivity and low background. By counting the number of photons emitted from a specimen, BLI can quantify biological events such as tumour growth, gene expression and drug response. The intensities and kinetics of the BL signal are affected by many factors and may confound the quantitative results acquired from consecutive imaging sessions or different specimens. We used three different mouse models of tumours to examine whether anaesthetics, positioning and tumour growth may affect the consistency of the BL signal. The results showed that BLI signal could be affected by different anaesthetics and repetitive positioning. Using the same anaesthetics produced consistent peak times, while other factors were held constant. However, as the tumours grew the peak times shifted and the time course of BL signals had different shapes, depending on the positioning of the mice. The data indicate that a carefully designed BLI experiment is required to generate optimal and consistent results. Copyright © 2008 John Wiley & Sons, Ltd. [source] |