Vivo Angiogenesis (vivo + angiogenesi)

Distribution by Scientific Domains


Selected Abstracts


A critical analysis of current in vitro and in vivo angiogenesis assays

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 3 2009
Carolyn A. Staton
Summary The study of angiogenesis has grown exponentially over the past 40 years with the recognition that angiogenesis is essential for numerous pathologies and, more recently, with the advent of successful drugs to inhibit angiogenesis in tumours. The main problem with angiogenesis research remains the choice of appropriate assays to evaluate the efficacy of potential new drugs and to identify potential targets within the angiogenic process. This selection is made more complex by the recognition that heterogeneity occurs, not only within the endothelial cells themselves, but also within the specific microenvironment to be studied. Thus, it is essential to choose the assay conditions and cell types that most closely resemble the angiogenic disease being studied. This is especially important when aiming to translate data from in vitro to in vivo and from preclinical to the clinic. Here we critically review and highlight recent advances in the principle assays in common use including those for endothelial cell proliferation, migration, differentiation and co-culture with fibroblasts and mural cells in vitro, vessel outgrowth from organ cultures and in vivo assays such as chick chorioallantoic membrane (CAM), zebrafish, sponge implantation, corneal, dorsal air sac, chamber and tumour angiogenesis models. Finally, we briefly discuss the direction likely to be taken in future studies, which include the use of increasingly sophisticated imaging analysis systems for data acquisition. [source]


Cleaved high molecular weight kininogen inhibits tube formation of endothelial progenitor cells via suppression of matrix metalloproteinase 2

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 1 2010
Y. WU
Summary.,Background and objective:,Endothelial progenitor cells (EPCs) contribute to postnatal neovascularization, thus promoting wide interest in their therapeutic potential in vascular injury and prevention of their dysfunction in cardiovascular diseases. Cleaved high molecular weight kininogen (HKa), an activation product of the plasma kallikrein-kinin system (KKS), inhibits the functions of differentiated endothelial cells including in vitro and in vivo angiogenesis. In this study, our results provided the first evidence that HKa is able to target EPCs and inhibits their tube forming capacity. Methods and results:,We determined the effect of HKa on EPCs using a three-dimensional vasculogenesis assay. Upon stimulation with vascular endothelial growth factor (VEGF) alone, EPCs formed vacuoles and tubes, and differentiated into capillary-like networks. As detected by gelatinolytic activity assay, VEGF stimulated secretion and activation of matrix metallopeptidase 2 (MMP-2), but not MMP-9, in the conditioned medium of 3D culture of EPCs. Specific inhibition or gene ablation of MMP-2, but not MMP-9, blocked the vacuole and tube formation by EPCs. Thus, MMP-2 is selectively required for EPC vasculogenesis. In a concentration-dependent manner, HKa significantly inhibited tube formation by EPCs and the conversion of pro-MMP-2 to MMP-2. Moreover, HKa completely blocked the association between pro-MMP-2 and ,v,3 integrin, and its inhibition of MMP-2 activation was dependent on the presence of ,v,3 integrin. In a purified system, HKa did not directly inhibit MMP-2 activity. Conclusions:,HKa inhibits tube forming capacity of EPCs by suppression of MMP-2 activation, which may constitute a novel link between activation of the KKS and EPC dysfunction. [source]


Modulation of the angiogenic phenotype of normal and systemic sclerosis endothelial cells by gain,loss of function of pentraxin 3 and matrix metalloproteinase 12

ARTHRITIS & RHEUMATISM, Issue 8 2010
Francesca Margheri
Objective Studies have shown that in systemic sclerosis (SSc) endothelial cells, overproduction of matrix metalloproteinase 12 (MMP-12) and pentraxin 3 (PTX3) is associated with defective angiogenesis. This study was undertaken to examine whether overexpression of the relevant molecules could inhibit angiogenesis of normal microvascular endothelial cells (MVECs), and whether silencing of these molecules in SSc MVECs could restore the lost angiogenic properties of the cells in vitro and in vivo. Methods Transient transfection of MVECs with human MMP12 and PTX3 was performed by electroporation. Silencing of MMP12 and PTX3 was obtained by treatment with small interfering RNA, and treatment effects were validated by Western blotting with specific antibodies and a fluorimetric assay. In vitro cell migration and capillary morphogenesis were studied on Matrigel substrates. In vivo angiogenesis was studied using a Matrigel sponge assay in mice. Results Transfection of MMP12 and PTX3 in normal MVECs resulted in loss of proliferation, invasion, and capillary morphogenesis in vitro, attributed to truncation of the urokinase-type plasminogen activator receptor by MMP12 and to the anti,fibroblast growth factor 2/anti,vascular endothelial growth factor activity of PTX3. These effects were particularly evident in mixed populations of transfected normal MVECs (50% transfected with MMP12 and 50% with PTX3). Silencing of the same molecules in SSc MVECs increased their invasion in Matrigel. Single-gene silencing did not increase the capillary morphogenesis of SSc MVECs, whereas double-gene,silenced cells showed a burst of capillary tube formation. Culture medium of silenced SSc MVECs stimulated angiogenesis in assays of Matrigel sponge invasion in mice. Conclusion Overexpression of either MMP12 or PTX3 in normal MVECs blunts their angiogenic properties. Loss of function of MMP12 and PTX3 in SSc MVECs restores the ability of the cells to produce capillaries in vitro and induces vascularization in vivo on a Matrigel sponge. [source]


Potent inhibition of in vivo angiogenesis and tumor growth by a novel cyclooxygenase-2 inhibitor, enoic acanthoic acid

CANCER SCIENCE, Issue 12 2007
Hye Jin Jung
Recent studies have shown that cyclooxygenase-2 is crucially involved in angiogenesis. In fact, several specific cyclooxygenase-2 inhibitors suppress angiogenesis in vivo, suggesting that cyclooxygenase-2 is a promising target for the treatment of angiogenesis-related diseases. In the present study we investigate the activity of a new cyclooxygenase-2 inhibitor, enoic acanthoic acid (EAA), which was synthesized from the known natural cyclooxygenase-2 inhibitor, acanthoic acid (AA). The demonstration of a high correlation between EAA- and celecoxib-induced gene expression signatures in microarray experiments validated the specificity of EAA on cyclooxygenase-2. In angiogenesis assays, EAA potently inhibited basic fibroblast growth factor-induced invasion and tube formation of bovine aortic endothelial cells in vitro. Moreover, this inhibitor prevented both neovascularization of the chorioallantoic membrane of growing chick embryo and basic fibroblast growth factor-induced mouse corneal angiogenesis in vivo. EAA also significantly suppressed the growth of bladder tumors in a mouse model, showing better antitumor activity than celecoxib. Furthermore, gelatin zymogram analysis revealed that EAA potently inhibited the activities of matrix metalloproteinase 2 and 9. These results clearly demonstrate that EAA is a promising agent for the prevention and treatment of angiogenesis-related diseases including cancer. (Cancer Sci 2007; 98: 1943,1948) [source]