Vivo Activation (vivo + activation)

Distribution by Scientific Domains


Selected Abstracts


In vivo application of mAb directed against the ,, TCR does not deplete but generates "invisible" ,, T cells

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2009
Christian Koenecke
Abstract mAb targeting the ,, TCR have been used for ,, T-cell depletion with varying success. Although the depletion-capacity of the anti-,, TCR mAb clone GL3 has been disputed repeatedly, many groups continue to use ,, T-cell depletion protocols involving the mAb clone UC7-13D5 and find significant biological effects. We show here that treatment with both GL3 and UC7-13D5 antibodies does not deplete ,, T cells in vivo, but rather leads to TCR internalization and thereby generates "invisible" ,, T cells. We addressed this issue using anti-,, TCR mAb injections into WT mice as well as into reporter TCR delta locus-histone 2B enhanced GFP knock-in mice, in which ,, T cells can be detected based on an intrinsic green fluorescence. Importantly, the use of TCR delta locus-histone 2B enhanced GFP mice provided here for the first time direct evidence that the "depleted" ,, T cells were actually still present. Our results show further that GL3 and UC7-13D5 mAb are in part cross-competing for the same epitope. Assessed by activation markers, we observed in vitro and in vivo activation of ,, T cells through mAb. We conclude that ,, T-cell depletion experiments must be evaluated with caution and discuss the implications for future studies on the physiological functions of ,, T cells. [source]


Redundant role for Zap70 in B cell development and activation

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2008
Farnaz Fallah-Arani Dr.
Abstract Expression of the Syk family tyrosine kinase Zap70 is strongly correlated with poor clinical outcome in chronic lymphocytic leukemia, the most common human leukemia characterized by B cell accumulation. The expression of Zap70 may reflect the specific cell of origin of the tumor or may contribute to pathology. Thus, the normal role of Zap70 in B cell physiology is of great interest. While initial studies reported that Zap70 expression in the mouse was limited to T and NK cells, more recent work has shown expression in early B cell progenitors and in splenic B cells, suggesting that the kinase may play a role in the development or activation of B cells. In this study, we show that Zap70 is expressed in all developing subsets of B cells as well as in recirculating B cells, marginal zone B cells and peritoneal B1 cells. Analysis of Zap70-deficient mice shows no unique role for Zap70 in either the development of B cells or in their in vitro and in vivo activation. However, we show that Zap70 can rescue the defective positive selection of immature B cells into the recirculating pool in Syk-deficient mice, demonstrating functional redundancy between these two kinases. [source]


Proximal changes in signal transduction that modify CD8+ T cell responsiveness in vivo

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2003
Séverine Guillaume
Abstract The antigen dose conditions the functional properties of CD8+ T cells generated after priming. At relatively low antigen doses, efficient memory T cells may be generated, while high antigen doses lead to tolerance. To determine the mechanisms leading to such different functional outcomes, we compared the proximal TCR signal transduction of naive cells, to that of memory or high-dose tolerant cells generated in vivo. In vivo activation led to the constitutive phosphorylation of CD3,, recruiting Zap70, in both memory and tolerant cells. In tolerant cells, these phenomena were much more marked, the CD3, and , chains no longer associated, and the Src kinases p56Lck and p59Fyn were inactive. Therefore, when the antigen load overcomes the capacities of immune control, a new mechanism intervenes to block signal transduction: the recruitment of Zap70 to CD3, becomes excessive, leading to TCR complex destabilization, Src kinase dysfunction, and signal arrest. [source]


Carbonyl cyanide m -chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H+ -ATPase in the yeast Saccharomyces cerevisiae

FEMS YEAST RESEARCH, Issue 4 2008
Michele B.P. Pereira
Abstract The plasma membrane H+ -ATPase from Saccharomyces cerevisiae is an enzyme that plays a very important role in the yeast physiology. The addition of protonophores, such as 2,4-dinitrophenol (DNP) and carbonyl cyanide m -chlorophenylhydrazone (CCCP), also triggers a clear in vivo activation of this enzyme. Here, we demonstrate that CCCP-induced activation of the plasma membrane H+ -ATPase shares some similarities with the sugar-induced activation of the enzyme. Phospholipase C and protein kinase C activities are essential for this activation process while Gpa2p, a G protein involved in the glucose-induced activation of the ATPase, is not required. CCCP also induces a phospholipase C-dependent increase in intracellular calcium. Moreover, we show that the availability of extracellular calcium is required for CCCP stimulation of H+ -ATPase, suggesting a possible connection between calcium signaling and activation of ATPase. [source]


Calcium/calmodulin-dependent protein kinase type IV is a target gene of the Wnt/,-catenin signaling pathway,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2009
Macarena S. Arrázola
Calcium/calmodulin-dependent protein kinase IV (CaMKIV) plays a key role in the regulation of calcium-dependent gene expression. The expression of CaMKIV and the activation of CREB regulated genes are involved in memory and neuronal survival. We report here that: (a) a bioinformatic analysis of 15,476 promoters of the human genome predicted several Wnt target genes, being CaMKIV a very interesting candidate; (b) CaMKIV promoter contains TCF/LEF transcription motifs similar to those present in Wnt target genes; (c) biochemical studies indicate that lithium and the canonical ligand Wnt-3a induce CaMKIV mRNA and protein expression levels in rat hippocampal neurons as well as CaMKIV promoter activity; (d) treatment of hippocampal neurons with Wnt-3a increases the binding of ,-catenin to the CaMKIV promoter: (e) In vivo activation of the Wnt signaling improve spatial memory impairment and restores the expression of CaMKIV in a mice double transgenic model for Alzheimer's disease which shows decreased levels of the kinase. We conclude that CaMKIV is regulated by the Wnt signaling pathway and that its expression could play a role in the neuroprotective function of the Wnt signaling against the Alzheimer's amyloid peptide. J. Cell. Physiol. 221: 658,667, 2009. © 2009 Wiley-Liss, Inc. [source]


Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse

JOURNAL OF PINEAL RESEARCH, Issue 2 2005
M. L. Dubocovich
Abstract:, In the mouse suprachiasmatic nucleus (SCN), melatonin activates MT1 and MT2 G-protein coupled receptors, which are involved primarily in inhibition of neuronal firing and phase shift of circadian rhythms. This study investigated the ability of melatonin to phase shift circadian rhythms in wild type (WT) and MT1 melatonin receptor knockout (KO) C57BL/6 mice. In WT mice, melatonin (90 ,g/mouse, s.c.) administered at circadian time 10 (CT10; CT12 onset of activity) significantly phase advanced the onset of the circadian activity rhythm (0.60 ± 0.09 hr, n = 41) when compared with vehicle treated controls (,0.02 ± 0.07 hr, n = 28) (P < 0.001). In contrast, C57 MT1KO mice treated with melatonin did not phase shift circadian activity rhythms (,0.10 ± 0.12 hr, n = 42) when compared with vehicle treated mice (,0.12 ± 0.07 hr, n = 43). Similarly, in the C57 MT1KO mouse melatonin did not accelerate re-entrainment to a new dark onset after an abrupt advance of the dark cycle. In contrast, melatonin (3 and 10 pm) significantly phase advanced circadian rhythm of neuronal firing in SCN brain slices independent of genotype with an identical maximal shift at 10 pm (C57 WT: 3.61 ± 0.38 hr, n = 3; C57 MT1KO: 3.45 ± 0.11 hr, n = 4). Taken together, these results suggest that melatonin-mediated phase advances of circadian rhythms of neuronal firing in the SCN in vitro may involve activation of the MT2 receptor while in vivo activation of the MT1 and possibly the MT2 receptor may be necessary for the expression of melatonin-mediated phase shifts of overt circadian activity rhythms. [source]