Home About us Contact | |||
Vitro Permeation Studies (vitro + permeation_studies)
Selected AbstractsIn vitro permeation of diclofenac sodium from novel microemulsion formulations through rabbit skinDRUG DEVELOPMENT RESEARCH, Issue 1 2005Gülten Kantarc Abstract In order to increase topical penetration of the nonsteroidal anti-inflammatory drug, diclofenac sodium, new microemulsion formulations were prepared to increase drug solubility and in vitro penetration of the drug. The influence of dimethyl sulfoxide and propylene glycol were also investigated as enhancers on the in vitro penetration of diclofenac sodium using Franz diffusion cells using excised dorsal rabbit skin. Factorial randomized design was performed to analyze the results of in vitro permeation studies. Microemulsions prepared with isopropyl alcohol were superior to those prepared with propanol. Enhancers had different effects depending on the formulation. Propylene glycol was superior to dimethyl sulfoxide when incorporated into isopropyl alcohol microemulsion, whereas dimethyl sulfoxide was superior to propylene glycol in propanol microemulsions. There were no observable histopathological differences between the skin of the control group and the treated groups at the light microscope level due to swelling of the skin tissue. The present study shows that microemulsion formulations containing isopropyl alcohol as co-surfactant and propylene glycol as enhancer represent a promising approach for a topical vehicle for diclofenac sodium. Drug Dev. Res. 65:17,25, 2005. © 2005 Wiley-Liss, Inc. [source] Bilayered nail lacquer of terbinafine hydrochloride for treatment of onychomycosisJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2010H.N. Shivakumar Abstract The present study aimed to develop bilayered nail lacquer of terbinafine hydrochloride (TH) for treatment of onychomycosis. The composite nail lacquer formed an underlying drug-loaded hydrophilic layer and overlying hydrophobic vinyl layer. The hydrophilic lacquer made of hydroxylpropyl methylcellulose E-15 contained polyethylene glycol 400 (PEG 400) as a drug permeation enhancer. The vinyl lacquer was composed of poly (4-vinyl phenol) as a water-resistant film former. In vitro permeation studies in Franz diffusion cells indicated that the amount of TH permeated across the human cadaver nail in 6 days was 0.32,±,0.14, 1.12,±,0.42, and 1.42,±,0.53,µg/cm2 from control (hydrophilic lacquer devoid of PEG 400), monolayer (hydrophilic lacquer alone), and bilayered nail lacquers, respectively. A higher nail drug load was seen in vitro with the bilayered lacquer (0.59,±,0.13,µg/mg) as compared to monolayer (0.36,±,0.09,µg/mg) and control (0.28,±,0.07,µg/mg) lacquers. The drug loss despite multiple washing was significantly low (p,<,0.001) for the bilayered lacquer owing to the protective vinyl coating. Clinical studies demonstrated the efficacy of bilayered lacquer to achieve better drug load in the nail plate (1.27,±,0.184,µg/mg) compared to monolayer (0.67,±,0.18,µg/mg) and control (0.21,±,0.04,µg/mg) lacquers. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:4267,4276, 2010 [source] Development of patch and spray formulations for enhancing topical delivery of sinomenine hydrochlorideJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2010Xinru Li Abstract The purpose of this work was to investigate feasibility of a promising topical drug delivery system (TDDS) for sinomenine hydrochloride (SMH), extracted from the Chinese medicinal plant sinomenine acutum and currently used for the treatment of rheumatoid arthritis. It was found that SMH was a weak base (pKa, 7.98,±,0.04) with pH-dependent solubility and partition coefficient. The result of in vitro permeation studies demonstrated that the permeation enhancer azone was the most effective. In contrast, spray had higher accumulative permeated amounts of SMH than patch, but permeated duration of spray was shorter than that of patch. The efficacy on Freund's complete adjuvant-induced arthritis suggested that there was near arthritis index for SMH spray with medium dose (i.e., 15,mg/rat) and oral solution at a dose of 12,mg/rat, indicating that topical SMH delivery system could achieve the similar anti-inflammatory efficacy with oral administration. Pharmacokinetic parameters including Cmax and AUC for both topical preparations were lower than those for oral preparation, which hinted that systemic side effect could be ignored. Therefore, the spray and patch were promising formulations for successful topical delivery of SMH through the skin instead of oral administration with side effects. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 1790,1799, 2010 [source] Thiomers in noninvasive polypeptide delivery: In vitro and in vivo characterization of a polycarbophil-cysteine/glutathione gel formulation for human growth hormoneJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 7 2004Verena M. Leitner Abstract This study was aimed at investigating the potential of a new polycarbophil-cysteine (PCP-Cys)/glutathione (GSH) gel formulation to enhance the permeation of the model drug human growth hormone (hGH) across nasal mucosa in vitro and in vivo. The aqueous nasal gel contained PCP-Cys, GSH, and hGH in a final concentration of 0.3%, 0.5%, and 0.6% (m/v), respectively. In vitro permeation studies were performed in Ussing chambers on freshly excised bovine nasal mucosa using fluorescence-labeled dextran (molecular mass: 4.3 kDa; FD-4) and hGH (FITC-hGH). The release profile of FITC-hGH from the gel formulation and an unmodified PCP control formulation was determined. Furthermore, in vivo studies in rats were performed comparing the PCP-Cys/GSH/hGH gel with PCP/hGH control gel and physiological saline. The permeation of FD-4 and FITC-hGH across the nasal mucosa was improved two-fold and three-fold, respectively, in the presence of PCP-Cys/GSH. The PCP-Cys/GSH/hGH gel and the PCP/hGH control gel showed the same biphasic and matrix-controlled drug release. The nasal administration of the PCP-Cys/GSH/hGH gel formulation to rats resulted in a significantly increased and prolonged hGH plasma concentration,time profile versus unmodified PCP gel and physiological saline. According to these results, PCP-Cys gels might represent a promising new strategy for systemic nasal polypeptide delivery. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:1682,1691, 2004 [source] In vivo pharmacokinetics of ketoprofen after patch application in the Mexican hairless pigBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 4 2009Masafumi Horie Abstract To evaluate the pharmacokinetics of topical drugs, in vitro permeation studies are performed using sacrificed pig skin or human tissues resected at surgery; however, these methods have their limitations in in vivo pharmacokinetics. This study examined the usefulness of Mexican hairless pigs for in vivo pharmacokinetic study, especially the drug concentration in the tissues. A ketoprofen patch was applied on the back of Mexican hairless pigs for 24,h, followed by sequential collection of blood specimens from 0 to 36,h (n=3). Also, the skin, subcutaneous fat, fascia and muscle from the center of the site of application were excised at 12,h after the application (n=4). Ketoprofen was first detected in the plasma at 8,h, the concentration increasing up to 24,h; the plasma concentration began to decrease after the removal of the ketoprofen patch. Ketoprofen concentrations in the tissues decreased with increasing depth of the tissues, but the values in the deep muscles, being the lowest among the tissues examined, were still higher than those in the plasma. While the data of drug concentration in human tissue are difficult to test, the Mexican hairless pig model appears to be attractive for in vivo pharmacokinetic studies of topically applied ketoprofen. Copyright © 2009 John Wiley & Sons, Ltd. [source] |