Home About us Contact | |||
Virus Binding (virus + binding)
Selected AbstractsInhibition of DC-SIGN-mediated trans infection of T cells by mannose-binding lectinIMMUNOLOGY, Issue 1 2003Gregory T. Spear Summary Some dendritic cells (DC) express a cell-surface lectin called ,dendritic cell-specific intracellular adhesion molecule 3 (ICAM-3)-grabbing non-integrin' (DC-SIGN). DC-SIGN has been shown to mediate a type of infection called ,trans' infection, where DC bind human immunodeficiency virus (HIV) and efficiently transfer the virus to T cells. We investigated the possibility that mannose-binding lectin (MBL), a soluble lectin that functions as a recognition molecule in innate immunity and that binds to HIV, could block trans infection mediated by DC-SIGN. Binding studies with glycoprotein (gp)120/gp41-positive and -negative virus preparations suggested that DC-SIGN and MBL bind primarily to glycans on gp120/gp41, as opposed to glycans on host-cell-derived proteins, indicating a close overlap in the binding site of the two lectins and supporting the notion that MBL could prevent binding of HIV to DC-SIGN. Preincubation of X4, R5 or dual-tropic HIV strains with MBL prevented DC-SIGN-mediated trans infection of T cells. The mechanism of MBL blocking trans infection of T cells was at least partly caused by blocking of virus binding to DC-SIGN positive cells. This study shows that MBL prevents DC-SIGN-mediated trans infection of T cells in vitro and suggests that in infected persons, MBL may inhibit DC-SIGN-mediated uptake and spread of HIV. [source] Dichotomy in cross-clade reactivity and neutralization by HIV-1 sera: Implications for active and passive immunotherapy,JOURNAL OF MEDICAL VIROLOGY, Issue 2 2005Lisa A. Cavacini Abstract The identification of broadly reactive and cross-clade neutralizing antibodies will facilitate the development of a more universally effective vaccine for human immunodeficiency virus (HIV). Antibodies in sera from individuals infected with Clade B HIV bind native primary viral isolates, and virus binding correlates with neutralization and stable clinical disease. In this study, we quantified cross-clade antibody reactivity and neutralization by Clades B and C sera. Primary viral isolates were captured by serum IgG bound to anti-human IgG and quantitated as p24 released by lysis of captured virus. Neutralization was determined using PHA-stimulated PBMC. Clade B antibodies reacted more frequently with Clade B R5 virus, but positive sera captured quantitatively more X4 virus than R5 and R5X4 virus. Clade B sera reacted less frequently and captured less Clade C virus than Clade B virus. Antibodies in Clade C sera captured Clades B and C isolates with equal frequency and quantity. There was no difference in neutralization of Clade B virus by either group of sera; however, Clade C sera neutralized Clade C virus, whereas Clade B sera were ineffective against Clade C virus. Thus, there are distinct differences in cross-clade reactivity of and neutralization by antibodies induced in response to Clade C infection compared to Clade B infection. Understanding antibody responses to native virions after Clade C infection and cross clade antibody behavior has implications for understanding pathogenesis and vaccine development. J. Med. Virol. 76:146,152, 2005. © 2005 Wiley-Liss, Inc. [source] Retrovirus-Polymer Complexes: Study of the Factors Affecting the Dose Response of TransductionBIOTECHNOLOGY PROGRESS, Issue 2 2007Natalia Landázuri We have previously shown that complexes of Polybrene (PB), chondroitin sulfate C (CSC), and retrovirus transduce cells more efficiently than uncomplexed virus because the complexes are large and sediment, reaching the cells more rapidly than by diffusion. Transduction reaches a peak at equal weight concentrations of CSC and PB and declines when the dose of PB is higher or lower than CSC. We hypothesized that the nonlinear dose response of transduction was a complex function of the molecular characteristics of the polymers, cell viability, and the number of viruses incorporated into the complexes. To test this hypothesis, we formed complexes using an amphotropic retrovirus and several pairs of oppositely charged polymers and used them to transduce murine fibroblasts. We examined the effect of the type and concentration of polymers used on cell viability, the size and charge of the complexes, the number of viruses incorporated into the complexes, and virus binding and transduction. Transduction was enhanced (2.5- to 5.5-fold) regardless of which polymers were used and was maximized when the number of positive charge groups was in slight excess (15,28%) of the number of negative charge groups. Higher doses of cationic polymer were cytotoxic, whereas complexes formed with lower doses were smaller, contained fewer viruses, and sedimented more slowly. These results show that the dose response of transduction by virus-polymer complexes is nonlinear because excess cationic polymer is cytotoxic, whereas excess anionic polymer reduces the number of active viruses that are delivered to the cells. [source] Inhibition of Human Cell Apoptosis by Silkworm HemolymphBIOTECHNOLOGY PROGRESS, Issue 4 2002Shin Sik Choi Many studies on preventing apoptosis have been carried out from the viewpoint of anti-apoptotic cloned-gene expressions inside cells, whereas in this study, we investigated the inhibition of apoptosis by the addition of silkworm hemolymph, a natural compound, from outside of the cells. In a previous study, we reported the inhibition effect of silkworm hemolymph on the baculovirus-induced insect cell apoptosis. Using the vaccinia virus-HeLa cell system as a model system in this study, we found that silkworm hemolymph, the insect serum, inhibits apoptosis not only in the insect cell system but also in the human cell system. The vaccinia virus-induced HeLa cell apoptosis was analyzed using DNA electrophoresis, TUNEL, and flow cytometry, and the resulting data confirmed that silkworm hemolymph inhibits human cell apoptosis. The inhibition of apoptosis due to silkworm hemolymph was not caused by an inhibition of virus binding and internalization steps, nor did silkworm hemolymph interfere with the virus production. The inhibition of apoptosis by silkworm hemolymph decreased the cell detachment from an adhering surface. With these characteristics, silkworm hemolymph can be effectively used to minimize cell death in commercial animal cell culture. [source] |