Virial Radius (virial + radius)

Distribution by Scientific Domains


Selected Abstracts


The variation of the galaxy luminosity function with group properties

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
Aaron Robotham
ABSTRACT We explore the shape of the galaxy luminosity function (LF) in groups of different mass by creating composite LFs over large numbers of groups. Following previous work using total group luminosity as the mass indicator, here we split our groups by multiplicity and by estimated virial (group halo) mass, and consider red (passive) and blue (star-forming) galaxies separately. In addition, we utilize two different group catalogues (2PIGG and Yang et al.) in order to ascertain the impact of the specific grouping algorithm and further investigate the environmental effects via variations in the LF with position in groups. Our main results are that LFs show a steepening faint end for early-type galaxies as a function of group mass/multiplicity, with a much suppressed trend (evident only in high mass groups) for late-type galaxies. Variations between LFs as a function of group mass are robust irrespective of which grouping catalogue is used, and broadly speaking what method for determining group ,mass' is used. We find in particular that there is a significant deficit of low-mass passive galaxies in low-multiplicity groups, as seen in high-redshift clusters. Further to this, the variation in the LF appears to only occur in the central regions of systems, and in fact seems to be most strongly dependent on the position in the group relative to the virial radius. Finally, distance,rank magnitude relations were considered. Only the Yang groups demonstrated any evidence of a correlation between a galaxy's position relative to the brightest group member and its luminosity. 2PIGG possessed no such gradient, the conclusion being the friend-of-friend algorithm suppresses the signal for weak luminosity,position trends and the Yang grouping algorithm naturally enhances it. [source]


Probing cosmology and galaxy cluster structure with the Sunyaev,Zel'dovich decrement versus X-ray temperature scaling relation

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009
Cien Shang
ABSTRACT Scaling relations among galaxy cluster observables, which will become available in large future samples of galaxy clusters, could be used to constrain not only cluster structure, but also cosmology. We study the utility of this approach, employing a physically motivated parametric model to describe cluster structure and applying it to the expected relation between the Sunyaev,Zel'dovich decrement (S,) and the emission-weighted X-ray temperature (Tew). The slope and normalization of the entropy profile, the concentration of the dark matter potential, the pressure at the virial radius and the level of non-thermal pressure support as well as the mass and redshift dependence of these quantities are described by free parameters. With a suitable choice of fiducial parameter values, the cluster model satisfies several existing observational constraints. We employ a Fisher matrix approach to estimate the joint errors on cosmological and cluster structure parameters from a measurement of S, versus Tew in a future survey. We find that different cosmological parameters affect the scaling relation differently: predominantly through the baryon fraction (,m and ,b), the virial overdensity (w0 and wa for low- z clusters) and the angular diameter distance (w0 and wa for high- z clusters; ,DE and h). We find that the cosmology constraints from the scaling relation are comparable to those expected from the number counts (dN/dz) of the same clusters. The scaling-relation approach is relatively insensitive to selection effects and it offers a valuable consistency check; combining the information from the scaling relation and dN/dz is also useful to break parameter degeneracies and help disentangle cluster physics from cosmology. Our work suggests that scaling relations should be a useful component in extracting cosmological information from large future cluster surveys. [source]


The distribution of ejected subhaloes and its implication for halo assembly bias

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2009
Huiyuan Wang
ABSTRACT Using a high-resolution cosmological N -body simulation, we identify the ejected population of subhaloes, which are haloes at redshift z= 0 but were once contained in more massive ,host' haloes at high redshifts. The fraction of the ejected subhaloes in the total halo population of the same mass ranges from 9 to 4 per cent for halo masses from ,1011 to ,1012 h,1 M,. Most of the ejected subhaloes are distributed within four times the virial radius of their hosts. These ejected subhaloes have distinct velocity distribution around their hosts in comparison to normal haloes. The number of subhaloes ejected from a host of given mass increases with the assembly redshift of the host. Ejected subhaloes in general reside in high-density regions, and have a much higher bias parameter than normal haloes of the same mass. They also have earlier assembly times, so that they contribute to the assembly bias of dark matter haloes seen in cosmological simulations. However, the assembly bias is not dominated by the ejected population, indicating that large-scale environmental effects on normal haloes are the main source for the assembly bias. [source]


Are fossil groups a challenge of the cold dark matter paradigm?

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009
Stefano Zibetti
ABSTRACT We study six groups and clusters of galaxies suggested in the literature to be ,fossil' systems (i.e. to have luminous diffuse X-ray emission and a magnitude gap of at least 2 mag R between the first and the second ranked member within half of the virial radius), each having good quality X-ray data and Sloan Digital Sky Survey (SDSS) spectroscopic or photometric coverage out to the virial radius. The poor cluster AWM 4 is clearly established as a fossil system, and we confirm the fossil nature of four other systems (RX J1331.5+1108, RX J1340.6+4018, RX J1256.0+2556 and RX J1416.4+2315), while the cluster RX J1552.2+2013 is disqualified as fossil system. For all systems, we present the luminosity functions within 0.5 and 1 virial radius that are consistent, within the uncertainties, with the universal luminosity function of clusters. For the five bona fide fossil systems, having a mass range 2 × 1013,3 × 1014 M,, we compute accurate cumulative substructure distribution functions (CSDFs) and compare them with the CSDFs of observed and simulated groups/clusters available in the literature. We demonstrate that the CSDFs of fossil systems are consistent with those of normal observed clusters and do not lack any substructure with respect to simulated galaxy systems in the cosmological , cold dark matter (,CDM) framework. In particular, this holds for the archetype fossil group RX J1340.6+4018 as well, contrary to earlier claims. [source]


New scaling relations in cluster radio haloes and the re-acceleration model

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
R. Cassano
ABSTRACT In this paper we derive new expected scaling relations for clusters with giant radio haloes in the framework of the re-acceleration scenario in a simplified, but physically motivated, form, namely: radio power (PR) versus size of the radio emitting region (RH), and PR versus total cluster mass (MH) contained in the emitting region and cluster velocity dispersion (,H) in this region. We search for these correlations by analysing the most recent radio and X-ray data available in the literature for a well-known sample of clusters with giant radio haloes. In particular we find a good correlation between PR and RH and a very tight ,geometrical' scaling between MH and RH. From these correlations PR is also expected to scale with MH and ,H and this is confirmed by our analysis. We show that all the observed trends can be well reconciled with expectations in the case of a slight variation of the mean magnetic field strength in the radio halo volume with MH. A byproduct correlation between RH and ,H is also found, and can be further tested by optical studies. In addition, we find that observationally RH scales non-linearly with the virial radius of the host cluster, and this immediately means that the fraction of the cluster volume which is radio emitting increases with cluster mass and thus that the non-thermal component in clusters is not self-similar. [source]


Cold dark matter microhalo survival in the Milky Way

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
G. W. Angus
ABSTRACT A special purpose N -body simulation has been built to understand the tidal heating of the smallest dark matter substructures (10,6 M, and 0.01 pc) from the grainy potential of the Milky Way due to individual stars in the disc and the bulge. To test the method, we first run simulations of single encounters of microhaloes with an isolated star, and compare with analytical predictions of the dark particle bound fraction as a function of impact parameter. We then follow the orbits of a set of microhaloes in a realistic flattened Milky Way potential. We concentrate on (detectable) microhaloes passing near the Sun with a range of pericentre and apocentre. Stellar perturbers near the orbital path of a microhalo would exert stochastic impulses, which we apply in a Monte Carlo fashion according to the Besançon model for the distribution of stars of different masses and ages in our Galaxy. Also incorporated are the usual pericentre tidal heating and disc shocking. We give a detailed diagnosis of typical microhaloes and find microhaloes with internal tangential anisotropy are slightly more robust than the ones with radial anisotropy. In addition, the dark particles generally go through of a random walk in velocity space and diffuse out of the microhaloes. We show that the typical destruction time-scales are strongly correlated with the stellar density averaged along a microhalo's orbit over the age of the stellar disc. We also present the morphology of a microhalo at several epochs which may hold the key to dark matter detections. We checked our results against different choices of microhalo mass, virial radius and anisotropy. [source]


Satellite systems around galaxies in hydrodynamic simulations

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2007
Noam I. Libeskind
ABSTRACT We investigate the properties of satellite galaxies formed in N -body/SPH simulations of galaxy formation in the ,CDM cosmology. The simulations include the main physical effects thought to be important in galaxy formation and, in several cases, produce realistic spiral discs. In total, a sample of nine galaxies of luminosity comparable to the Milky Way was obtained. At magnitudes brighter than the resolution limit, MV=,12, the luminosity function of the satellite galaxies in the simulations is in excellent agreement with data for the Local Group. The radial number density profile of the model satellites, as well as their gas fractions also match observations very well. In agreement with previous N -body studies, we find that the satellites tend to be distributed in highly flattened configurations whose major axis is aligned with the major axis of the (generally triaxial) dark halo. In two out of three systems with sufficiently large satellite populations, the satellite system is nearly perpendicular to the plane of the galactic disc, a configuration analogous to that observed in the Milk Way. The discs themselves are perpendicular to the minor axis of their host haloes in the inner parts, and the correlation between the orientation of the galaxy and the shape of the halo persists even out to the virial radius. However, in one case the disc's minor axis ends up, at the virial radius, perpendicular to the minor axis of the halo. The angular momenta of the galaxies and their host halo tend to be well aligned. [source]


Discovery and analysis of three faint dwarf galaxies and a globular cluster in the outer halo of the Andromeda galaxy,

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
N. F. Martin
ABSTRACT We present the discovery of three faint dwarf galaxies and a globular cluster in the halo of the Andromeda galaxy (M31), found in our MegaCam survey that spans the southern quadrant of M31, from a projected distance of ,50 to ,150 kpc. Though the survey covers 57 deg2, the four satellites lie within 2° of one another. From the tip of the red giant branch (RGB), we estimate that the globular cluster lies at a distance of 631 ± 58 kpc from the Milky Way and along with a ,100 kpc projected distance from M31 we derive a total distance of 175 ± 55 kpc from its host, making it the farthest M31 globular cluster known. It also shows the typical characteristics of a bright globular cluster, with a half-light radius of 2.3 ± 0.2 pc and an absolute magnitude in the V band of MV,0=,8.5 ± 0.3. Isochrone fitting reveals that it is dominated by a very old population with a metallicity of [Fe/H],,1.3. The three dwarf galaxies are revealed as overdensities of stars that are aligned along the RGB tracks in their colour,magnitude diagrams. These satellites are all very faint, with absolute magnitudes in the range ,7.3 ,MV,0,,6.4, and show strikingly similar characteristics with metallicities of [Fe/H],,1.4 and half-light radii of ,120 ± 45 pc, making these dwarf galaxies two to three times smaller than the smallest previously known satellites of M31. Given their faintness, their distance is difficult to constrain, but we estimate them to be between 740 and 955 kpc which places them well within the virial radius of the host galaxy. The panoramic view of the MegaCam survey can provide an unbiased view of the satellite distribution of the Andromeda galaxy and, extrapolating from its coverage of the halo, we estimate that up to 45 ± 20 satellites brighter than MV,,6.5 should be orbiting M31. Hence faint dwarf galaxies cannot alone account for the missing satellites that are predicted by , cold dark matter models, unless they reside in dark matter minihaloes that are more massive than the typical masses of 107 M, currently inferred from their central radial velocity dispersion. [source]


The alignment between the distribution of satellites and the orientation of their central galaxy

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2006
Xiaohu Yang
ABSTRACT We use galaxy groups selected from the Sloan Digital Sky Survey to examine the alignment between the orientation of the central galaxy (defined as the brightest group member) and the distribution of satellite galaxies. By construction, we therefore only address the alignment on scales smaller than the halo virial radius. We find a highly significant alignment of satellites with the major axis of their central galaxy. This is in qualitative agreement with the recent study of Brainerd, but inconsistent with several previous studies who detected a preferential minor-axis alignment. The alignment strength in our sample is strongest between red central galaxies and red satellites. On the contrary, the satellite distribution in systems with a blue central galaxy is consistent with isotropic. We also find that the alignment strength is stronger in more massive haloes and at smaller projected radii from the central galaxy. In addition, there is a weak indication that fainter (relative to the central galaxy) satellites are more strongly aligned. We present a detailed comparison with previous studies, and discuss the implications of our findings for galaxy formation. [source]


The NOAO Fundamental Plane Survey , III.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2006
Variations in the stellar populations of red-sequence galaxies from the cluster core to the virial radius
ABSTRACT We analyse absorption line-strength indices for ,3000 red-sequence galaxies in 94 nearby clusters to investigate systematic variations of their stellar content with location in the host cluster. The data are drawn from the National Optical Astronomy Observatory (NOAO) Fundamental Plane Survey. Our adopted method is a generalization of that introduced by Nelan et al. to determine the global age,mass and metallicity,mass relations from the same survey. We find strong evidence for a change in galaxy properties, at fixed mass, over a range from the cluster centre to the virial radius, R200. For example, red-sequence galaxies further out in the clusters have weaker Mgb5177 (at ,8, significance) and stronger H, and H, absorption (,3,, ,4,) than galaxies of the same velocity dispersion in the cluster cores. The Fe5270 and Fe5335 indices show only very weak trends with radius. Using a total of 12 indices, the pattern of cluster-centric gradients is considered in light of their different dependences on stellar age and chemical composition. The measured gradients for all 12 indices can be reproduced by a model in which red-sequence galaxies at ,1 R200 have on average younger ages (by 15 ± 4 per cent) and lower ,-element abundance ratios (by 10 ± 2 per cent) than galaxies of the same velocity dispersion but located near the cluster centres. For the total metallicity, Z/H, no significant gradient is found (2 ± 3 per cent larger at R200 than in the cores). There are hints that the age trend may be stronger for galaxies of lower mass and/or for galaxies with more discy morphology. We show, however, that the trends cannot be driven primarily by changes in the morphological mix as a function of radius. The cluster-centric age and [,/Fe] gradients are in the sense expected if galaxies in the cluster core were accreted at an earlier epoch than those at larger radii, and if this earlier accretion contributed to an earlier cessation of star formation. The size of the observed age trend is comparable to predictions from semi-analytic models of hierarchical galaxy formation. [source]


Do mergers spin-up dark matter haloes?

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2007
Elena D'Onghia
ABSTRACT We use a large cosmological N -body simulation to study the origin of possible correlations between the merging history and spin of cold dark matter haloes. In particular, we examine claims that remnants of major mergers tend to have higher-than-average spins, and find that the effect is driven largely by unrelaxed systems: equilibrium dark matter haloes show no significant correlation between spin and merging history. Out-of-equilibrium haloes have, on average, higher spin than relaxed systems, suggesting that the virialization process leads to a net decrease in the value of the spin parameter. We find that this decrease is due to the internal redistribution of mass and angular momentum that occurs during virialization. This process is especially efficient during major mergers, when high angular momentum material is pushed beyond the virial radius of the remnant. Because such redistribution likely affects the angular momentum of baryons and dark matter unevenly, our findings question the common practice of identifying the specific angular momentum content of a halo with that of its embedded luminous component. Further work is needed to elucidate the true relation between the angular momentum content of baryons and dark matter in galaxy systems assembled hierarchically. [source]


The evolution of spheroidal galaxies in different environments

ASTRONOMISCHE NACHRICHTEN, Issue 9-10 2009
A. Fritz
Abstract We analyse the kinematic and chemical evolution of 203 distant spheroidal (elliptical and S0) galaxies at 0.2 < z < 0.8 which are located in different environments (rich clusters, low-mass clusters and in the field). VLT/FORS and CAHA/MOSCA spectra with intermediate-resolution have been acquired to measure the internal kinematics and stellar populations of the galaxies. From HST/ACS and WFPC2 imaging, surface brightness profiles and structural parameters were derived for half of the galaxy sample. The scaling relations of the Faber-Jackson relation and Kormendy relation as well as the Fundamental Plane indicate a moderate evolution for the whole galaxy population in each density regime. In all environments, S0 galaxies show a faster evolution than elliptical galaxies. For the cluster galaxies a slight radial dependence of the evolution out to one virial radius is found. Dividing the samples with respect to their mass, a mass dependent evolution with a stronger evolution of lower-mass galaxies (M < 2 × 1011 M,) is detected. Evidence for recent star formation is provided by blue colours and weak [OII] emission or strong H, absorption features in the spectra. The results are consistent with a down-sizing formation scenario which is independent from the environment of the galaxies (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]