Home About us Contact | |||
Viral Production (viral + production)
Selected AbstractsEvidence that viral abundance across oceans and lakes is driven by different biological factorsFRESHWATER BIOLOGY, Issue 6 2008JESSICA L. CLASEN Summary 1. Samples from 16 lakes in central (n = 145) and western (n = 12) North America, the coastal northeast Pacific (n = 302) and the western Canadian Arctic Oceans (n = 142) were collected and analysed for viral, bacterial and cyanobacterial abundances and chlorophyll- a concentration. 2. Viral abundance was significantly different among the environments. It was highest in the coastal Pacific Ocean and lowest in the coastal Arctic Ocean. The abundances of bacteria and cyanobacteria as well as chlorophyll- a concentrations also differed significantly among the environments, with both bacterial abundance and chlorophyll- a concentration highest in lakes. As a consequence, the association of these variables with viral abundance varied among the environments. 3. Discriminant analyses with the abundance data indicated that the marine and freshwater environments were predictably different from each other. Multiple-regression analysis included bacterial and cyanobacterial abundances, and chlorophyll- a concentration as significant variables in explaining viral abundance in lakes. In regression models for the coastal Pacific Ocean, bacterial and cyanobacterial abundances were significant variables, and for the coastal Arctic Ocean viral abundance was predicted by bacterial abundance and chlorophyll- a concentration. 4. The relationship of viral and bacterial abundance differed between the investigated freshwater and marine environments, probably because of differences in viral production and loss rates. However, freshwaters had fewer viruses compared to bacteria, despite previously documented higher burst sizes and frequencies of infected cells, suggesting that loss rates may be more important in lakes. 5. Together, these findings suggest that there are different drivers of viral abundance in different aquatic environments, including lakes and oceans. [source] Viral dynamics and response differences in HCV-infected African American and white patients treated with IFN and ribavirinHEPATOLOGY, Issue 6 2003Jennifer E. Layden-Almer Studies have suggested that African American patients infected with hepatitis C virus (HCV) do not respond as well to treatment with interferon (IFN) as white patients. Here we analyzed the difference in the viral kinetic response between genotype 1 HCV-infected African American patients (n = 19) and white patients (n = 16). Patients were treated with 10 mIU IFN-,2b daily with or without ribavirin for 1 month followed by 3 mIU IFN-,2b 3 times a week with ribavirin. The kinetic parameters (,, treatment effectiveness at inhibiting virion production; ,, loss rate of virus-producing cells; c, clearance rate of free virions; ,, delay until viral decline starts) were estimated from the viral load decay profiles using a previously described mathematical model. Differences in early kinetic parameters and viral negativity frequencies at weeks 4, 12, and 48 were compared. Ribavirin did not appear to enhance any of the viral kinetic parameters, although this may have been due to the high dose of IFN used. African American patients exhibited significantly (P = .005) lower drug effectiveness (88.6% vs. 98.2%) compared with white patients, accounting for a 0.8 log lower HCV RNA decrease in the first 24 hours of treatment. Significant differences (P = .006) were also noted for ,. There was no correlation between any of the viral kinetic parameters and either age, body mass index (BMI), or genotype 1 subtype. No patient achieved viral negativity at weeks 4, 12, or 48 without an , greater than 90%. The mean viral decline and viral negativity rates were statistically different between the two races; however, when controlling for treatment effectiveness, these differences were no longer apparent. In conclusion, the failure of IFN response in African American patients infected with genotype 1 HCV is in part due to an impaired ability to inhibit viral production. [source] Intracellular localization of the Epstein-Barr virus BFRF1 gene product in lymphoid cell lines and oral hairy leukoplakia lesionsJOURNAL OF MEDICAL VIROLOGY, Issue 1 2004Antonella Farina Abstract A novel protein encoded by the BFRF1 gene of the Epstein-Barr virus was identified recently [Farina et al. (2000) J Virol 74:3235,3244], which is antigenic "in vivo" and expressed early in the viral replicative cycle. In the present study, its subcellular localization was examined in greater detail comparing Epstein-Barr virus (EBV) induced producing and nonproducing cell lines by immunofluorescence: in 12-0-tetradecanoyl phorbol-13-acetate (TPA)-induced Raji and B95-8 cells, as well as in anti-IgG-stimulated Akata cells, the protein appeared to be localized over the cell nuclear membrane. A similar nuclear membrane localization was observed in epithelial cells of oral hairy leukoplakia, a pathological manifestation of permissive EBV infection. In contrast, upon transfection of BFRF1 in the EBV-negative Burkitt's lymphoma cell line DG75, the protein was localized predominantly over the plasma membrane. The membrane localization was abolished when DG75 cells were transfected with a C-terminal deletion mutant of BFRF1 lacking the transmembrane domain. Because induced Raji cells do not produce virus, the above observations indicate that the nuclear membrane localization is not associated with viral production, but requires the expression of EBV genes, and suggest that additional proteins, expressed early during viral lytic infection, might be necessary to target the protein to the nuclear membrane. Immunogold electron microscopy on ultrathin cryosections of induced B95-8 cells showed that BFRF1 on the nuclear membranes was concentrated over multilayered domains representing areas of active viral replication or at the sites of viral budding, suggesting that BFRF1 is involved in the process of viral assembly. J. Med. Virol. 72:102,111, 2004. © 2004 Wiley-Liss, Inc. [source] Modifications in the human T,cell proteome induced by intracellular HIV-1 Tat protein expressionPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue S1 2006Mayte Coiras Abstract The effects of the human immunodeficiency virus type,1 (HIV-1) Tat protein on cellular gene expression were analysed using a Jurkat cell line that was stably transfected with tat,gene in a doxycycline-repressible expression system. Expressed Tat protein (aa,1,101) was proved to present basically a nuclear localisation, and to be fully functional to induce HIV,LTR transactivation. Tat expression also resulted in protection from Tunicamycin-induced apoptosis as determined by DNA staining and TUNEL assays. We applied proteomics methods to investigate changes in differential protein expression in the transfected Jurkat-Tat cells. Protein identification was performed using 2-D DIGE followed by MS analysis. We identified the down-regulation of several cytoskeletal proteins such as actin, ,-tubulin, annexin,II, as well as gelsolin, cofilin and the Rac/Rho-GDI complex. Down-expression of these proteins could be involved in the survival of long-term reservoirs of HIV-infected CD4+ T,cells responsible for continuous viral production. In conclusion, in addition to its role in viral mRNA elongation, the proteomic approach has provided insight into the way that Tat modifies host cell gene expression. [source] Reassessing culture media and critical metabolites that affect adenovirus productionBIOTECHNOLOGY PROGRESS, Issue 1 2010Chun Fang Shen Abstract Adenovirus production is currently operated at low cell density because infection at high cell densities still results in reduced cell-specific productivity. To better understand nutrient limitation and inhibitory metabolites causing the reduction of specific yields at high cell densities, adenovirus production in HEK 293 cultures using NSFM 13 and CD 293 media were evaluated. For cultures using NSFM 13 medium, the cell-specific productivity decreased from 3,400 to 150 vp/cell (or 96% reduction) when the cell density at infection was increased from 1 to 3 × 106 cells/mL. In comparison, only 50% of reduction in the cell-specific productivity was observed under the same conditions for cultures using CD 293 medium. The effect of medium osmolality was found critical on viral production. Media were adjusted to an optimal osmolality of 290 mOsm/kg to facilitate comparison. Amino acids were not critical limiting factors. Potential limiting nutrients including vitamins, energy metabolites, bases and nucleotides, or inhibitory metabolites (lactate and ammonia) were supplemented to infected cultures to further investigate their effect on the adenovirus production. Accumulation of lactate and ammonia in a culture infected at 3 × 106 cells/mL contributed to about 20% reduction of the adenovirus production yield, whereas nutrient limitation appeared primarily responsible for the decline in the viral production when NSFM 13 medium was used. Overall, the results indicate that multiple factors contribute to limiting the specific production yield at cell densities beyond 1 × 106 cells/mL and underline the need to further investigate and develop media for better adenoviral vector productions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] The ESCRT machinery is not required for human cytomegalovirus envelopmentCELLULAR MICROBIOLOGY, Issue 12 2007Alberto Fraile-Ramos Summary The human cytomegalovirus (HCMV) has been proposed to complete its final envelopment on cytoplasmic membranes prior to its release to the extracellular medium. The nature of these membranes and the mechanisms involved in virus envelopment and release are poorly understood. Here we show by immunogold-labelling and electron microscopy that CD63, a marker of multivesicular bodies (MVBs), is incorporated into the viral envelope, supporting the notion that HCMV uses endocytic membranes for its envelopment. We therefore investigated a possible role for the cellular endosomal sorting complex required for transport (ESCRT) machinery in HCMV envelopment. Depletion of tumour suppressor gene 101 and ALIX/AIP1 with small interfering RNAs (siRNAs) in HCMV-infected cells did not affect virus production. In contrast, siRNAs against the vacuolar protein sorting 4 (VPS4) proteins silenced the expression of VPS4A and VPS4B, inhibited the sorting of epidermal growth factor to lysosomes, the formation of HIV Gag-derived virus-like particles and vesicular stomatitis virus infection, but enhanced the number of HCMV viral particles produced. Treatment of infected cells with protease inhibitors also increased viral production. These studies indicate that, in contrast to some enveloped RNA viruses, HCMV does not require the cellular ESCRT machinery to complete its envelopment. [source] |