Viral Origin (viral + origin)

Distribution by Scientific Domains


Selected Abstracts


Re-oxygenation of hypoxic simian virus 40 (SV40)-infected CV1 cells causes distinct changes of SV40 minichromosome-associated replication proteins

FEBS JOURNAL, Issue 9 2002
Hans-Jörg Riedinger
Hypoxia interrupts the initiation of simian virus 40 (SV40) replication in vivo at a stage situated before unwinding of the,origin region. After re-oxygenation, unwinding followed by a synchronous round of viral replication takes place. To,further characterize the hypoxia-induced inhibition of unwinding, we analysed the binding of several replication proteins to the viral minichromosome before and after re-oxygenation. T antigen, the 34-kDa subunit of replication protein A (RPA), topoisomerase I, the 48-kDa subunit of primase, the 125-kDa subunit of polymerase ,, and the 37-kDa subunit of replication factor C (RFC) were present at the viral chromatin already under hypoxia. The 70-kDa subunit of RPA, the 180-kDa subunit of polymerase ,, and proliferating cell nuclear antigen (PCNA) were barely detectable at the SV40 chromatin under hypoxia and significantly increased after re-oxygenation. Immunoprecipitation of minichromosomes with T antigen-specific antibody and subsequent digestion with micrococcus nuclease revealed that most of the minichromosome-bound T antigen was associated with the viral origin in hypoxic and in re-oxygenated cells. T antigen-catalysed unwinding of the SV40 origin occurred, however, only after re-oxygenation as indicated by (a) increased sensitivity of re-oxygenated minichromosomes against digestion with single-stranded DNA-specific nuclease P1; (b) stabilization of RPA-34 binding at the SV40 minichromosome; and (c) additional phosphorylations of RPA-34 after re-oxygenation, probably catalysed by DNA-dependent protein kinase. The results presented suggest that the subunits of the proteins necessary for unwinding, primer synthesis and primer elongation first assemble at the SV40 origin in form of stable, active complexes directly before they start to work. [source]


MicroRNA in the immune system, microRNA as an immune system

IMMUNOLOGY, Issue 3 2009
Li-Fan Lu
Summary The advent of microRNA has potentially uncovered a new level of complexity to be considered for every biological process. Through the modulation of transcription and translation, microRNA alter the basal state of cells and the outcome of stimulatory events. The exact effect of the microRNA network and individual microRNA on cellular processes is only just starting to be dissected. In the immune system, microRNA appear to have a key role in the early differentiation and effector differentiation of B cells. In T cells, microRNA have been shown to be key regulators of the lineage induction pathways, and to have a strong role in the induction, function and maintenance of the regulatory T-cell lineage. MicroRNA are also important for regulating the differentiation of dendritic cells and macrophages via toll-like receptors, with responsibilities in suppressing effector function before activation and enhancing function after stimulation. In addition to regulating key processes in the immune system, microRNA may also represent an archaic immune system themselves. Small interfering RNA of viral origin has been shown to function as an intracellular mediator in the suppression of viral infection in eukaryotes as diverse as plants, insects, nematodes and fungi, and there is growing evidence that endogenous mammalian microRNA can have similar impacts. In this article we speculate that the anti-viral function of microRNA drove the expression of different subsets of microRNA in different cellular lineages, which may have, in turn, led to the myriad of roles microRNA play in lineage differentiation and stability. [source]


Discovery of the hepatitis C virus

LIVER INTERNATIONAL, Issue 2009
Michael Houghton
Abstract After nearly 6 years of intensive investigations between 1982 and 1988 in my laboratory at Chiron corporation, in which numerous molecular biological methods were used to investigate the viral aetiology of parenterally transmitted non-A, non-B viral hepatitis (NANBH), a single cDNA clone (5-1-1) was isolated that was shown to be derived from a new flavi-like virus, termed the hepatitis C virus (HCV). After screening hundreds of millions of bacterial cDNA clones derived from different liver and plasma samples obtained from experimentally infected chimpanzees, a single HCV clone was eventually isolated using a novel, blind immunoscreening method in which antibodies derived from a clinically diagnosed NANBH patient were used to identify a cDNA clone encoding an immunodominant epitope within HCV nonstructural protein 4. Its viral origin was demonstrated by its specific hybridization to a large single-stranded RNA molecule of ,10 000 nucleotides found only in NANBH-infected samples that shared distant sequence identity with flaviviruses. Further, HCV clone 5-1-1 was shown to be extrachromosomal and to encode an antigen eliciting antibody seroconversion only in NANBH-infected chimpanzees and humans. Subsequent work demonstrated that HCV was the principal cause of parenterally transmitted NANBH around the world, with an estimated 170 million global carriers and that blood screening tests detecting circulating HCV antibodies and viral RNA could effectively eradicate the transmission of transfusion-associated NANBH. Key viral-encoded enzymes essential to its life cycle are now the targets of vigorous, ongoing drug development activities, and the feasibility of successful vaccination strategies has been demonstrated using the valuable chimpanzee model, without which any progress on HCV would not have been possible. My colleagues and coworkers who made essential contributions to the discovery of HCV were George Kuo, who had his own laboratory at Chiron and who provided intellectual and practical input, Dan Bradley of the Centers for Disease Control and Prevention, who provided a large supply of well-characterized chimpanzee samples and knowledge of the NANBH field, and Qui-Lim Choo, in my own laboratory, who provided many years of outstandingly dedicated and precise molecular biology expertise. [source]


Detection of viruses in nasal swab samples from horses with acute, febrile, respiratory disease using virus isolation, polymerase chain reaction and serology

AUSTRALIAN VETERINARY JOURNAL, Issue 1-2 2007
K Dynon
Objective To examine the association of viruses with acute febrile respiratory disease in horses. Design Nasal swab and serum samples were collected from 20 horses with acute febrile upper respiratory disease that was clinically assessed to have a viral origin. Methods Each of the samples was inoculated onto equine fetal kidney, RK13 and Vero cell cultures, and viral nucleic acid was extracted for polymerase chain reaction (PCR) or reverse transcription PCR. PCR primers were designed to amplify nucleic acid from viruses known to cause or be associated with acute febrile respiratory disease in horses in Australia. A type specific ELISA was used to measure equine herpesvirus (EHV1 and EHV4) antibody, and serum neutralisation assays were used to measure equine rhinitis A virus (ERAV) and equine rhinitis B virus 1 and 2 (ERBV1 and ERBV2) antibody titres in serum samples. Results Virus was isolated from 4 of 20 nasal swab samples. There were three isolations of EHV4 and one of ERBV2. By PCR, virus was identified in the nasal swab samples of 12 of the 20 horses. Of those that were positive, 17 viruses were detected as follows: one triple positive (EHV4, EHV2, and EHV5), three double positives (EHV4, ERBV and EHV2, EHV5 in two horses) and eight single positives (EHV4 in two horses, EHV2 in one horse, EHV5 in six horses and ERBV in six horses). Conclusion By virus isolation and PCR, 17 viruses were identified in nasal swab samples from 12 of 20 horses that had acute febrile respiratory disease consistent with a diagnosis of virus infection. Initial PCR identification and subsequent virus isolation led to the isolation of ERBV2 for the first time in Australia and the second time anywhere of ERBV2. [source]


Asymmetrical periflexural exanthem exhibiting pseudoisomorphic Köebner response in an adult

CLINICAL & EXPERIMENTAL DERMATOLOGY, Issue 7 2009
N. R. Dar
Summary Asymmetrical periflexural exanthem is a rare clinical condition, seen almost exclusively in children. Very few adult cases have been reported in the literature. We report a case of this rare eruption in an adult man showing characteristic clinical and histological features. Interestingly, this patient also exhibited a pseudoisomorphic Köebner response. Although an infective aetiology of viral origin has been suggested for this localized eruption, the aetiology remains unknown. We are of the opinion that the pseudoisomorphic Köebner response in this patient may support the inoculation hypothesis in the pathogenesis of this disorder. [source]