Viable Epidermis (viable + epidermis)

Distribution by Scientific Domains


Selected Abstracts


A clonal cutaneous CD30+ lymphoproliferative eruption in a patient with evidence of past exposure to hepatitis E

INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 7 2000
Freddye M. Lemons-Estes CDR, MC USN
The patient was a 52-year-old white man who had worked in remote areas of the world during the past 2 years, including an extended period in rural areas of Central Africa and in Central and South America. He had no acute illnesses during the 2-year period except for rare, mild, upper respiratory tract infections. For approximately 1 year, however, he had developed recurrent, papular-vesicular, slightly painful lesions on the fingers and palms, that spontaneously healed over weeks to months ( Fig. 1). The patient had no other concurrent illnesses and no abnormal laboratory findings, except for positive enzyme-linked immunoabsorbent assay (ELISA) for immunoglobulin G (IgG) antibodies for hepatitis E virus (HEV) using a recombinant expressed HEV antigen (Genelabs Technologies, Inc., San Antonio). Prolonged treatment with minocycline did not appear to moderate the lesions. At approximately 2.5 years after the development of his first cutaneous lesion, however, the patient reported that he had had no new lesions for over 3 months. Figure 1. Vesicular ,lesion on the finger which regressed over a period of weeks A biopsy specimen showed an intraepidermal vesicle with prominent epidermal necrosis and reticular degeneration ( Fig. 2). Within the epidermis, there was a dense infiltrate of lymphoid cells. The majority of these cells were pleomorphic with prominent nucleoli and frequent mitotic figures ( Fig. 3). Sheets of atypical cells were found in the subjacent dermis. The infiltrate extended down into the reticular dermis. With extension into the dermis, the infiltrate became more polymorphous with more small lymphoid cells, large numbers of eosinophils, and some plasma cells located more deeply. Figure 2. Intraepidermal ,blister showing reticular degeneration and marked epidermotrophism of large atypical cells with extension into the dermis with a mixed infiltrate containing eosinophils and plasma cells (30×) Figure 3. Intraepidermal ,infiltrate of large atypical cells with extension into the dermis with a mixed infiltrate containing eosinophils and plasma cells (400×) Immunohistochemical stains for CD3 (DAKO), CD4 (Becton Dickinson), CD8 (Becton Dickinson), CD15 (LeuM1, Becton Dickinson), CD20 (L-26, DAKO), CD30 (Ber-H2, DAKO), CD45RO (UCHL1, DAKO), S-100 protein (DAKO), T-cell intracellular antigen (TIA) (Coulter), epithelial membrane antigen (EMA) (DAKO), KP-1 (CD68, DAKO), MAC-387 (DAKO), Epstein,Barr virus (EBV) latent membrane antigen-1 (LMP-1, DAKO), and EBV-encoded nuclear antigen 2 (EBNA2, DAKO) were performed on formalin-fixed tissue using the ABC method with DABA as the chromagen. CD3 showed diffuse membrane staining of the large atypical lymphoid cells, as well as the majority of the small lymphoid cells ( Fig. 4). CD4 showed positive membrane staining of the large atypical lymphoid cells and the majority of the small lymphoid cells. CD8 showed only scattered light membrane staining of small lymphoid cells. CD15 was negative, and CD20 showed foci of groups of small lymphoid cells mainly within the reticular dermis. CD30 showed positive membrane and paranuclear staining of the large atypical cells, most abundant within the epidermis and papillary dermis ( Fig. 5). CD45RO showed positive membrane staining of the large atypical cells and the majority of the small lymphoid cells. S-100 protein showed increased dendritic cells within the surrounding viable epidermis and the subjacent papillary dermis ( Fig. 6). TIA showed granular staining in the large atypical lymphoid cells and only rare staining in small lymphoid cells ( Fig. 7). EMA staining was essentially negative. KP-1 showed only scattered positive cells mainly in the lower papillary and the reticular dermis. MAC-387 showed membrane staining in the viable epidermis ( Fig. 8). LMP-1 and EBNA2 for EBV were negative within the lymphoid cells as well as within the overlying epidermis. Figure 4. Immunohistochemical ,staining for CD3 showing diffuse staining of lymphoid cells within the epidermis and dermis (150×) Figure 5. Immunohistochemical ,staining for CD30 showing membrane and paranuclear staining of large atypical lymphoid cells within the epidermis and papillary dermis (a, 150× b, 400×) Figure 6. Immunohistochemical ,staining for S-100 protein within the epidermis and in the papillary dermis (a, 150× b, 300×) Figure 7. Immunohistochemical ,granular staining of large atypical lymphoid cells for TIA (200×) Figure 8. Immunohistochemical ,staining for MAC-387 showing epidermal staining (100×) Gene rearrangement studies showed a ,-T-cell receptor gene rearrangement. The monoclonal band was detected with VJ1, VJ2, and D1J2 primer sets. The T-cell receptor , rearrangement assay has a sensitivity of 61% and a specificity of 94% for the detection of a monoclonal rearrangement in T-cell lymphomas for which amplifiable DNA can be recovered. Electron microscopy was performed on formalin-fixed material, positive-fixed with 2.5% phosphate-buffered glutaraldehyde and further with 1% osmium tetroxide by standard techniques. Intracellular, 50,60-nm, cytoplasmic, spherical, viral-like particles were identified ( Fig. 9). Figure 9. Electron ,microscopy showing 50,60-nm diameter, intracellular, viral-like particles (arrows) (70,000×) [source]


Skin hydration: a review on its molecular mechanisms

JOURNAL OF COSMETIC DERMATOLOGY, Issue 2 2007
Sylvie Verdier-Sévrain MD
Summary Water is absolutely essential for the normal functioning of the skin and especially its outer layer, the stratum corneum (SC). Loss of water from the skin must be carefully regulated, a function dependent on the complex nature of the SC. The retention of water in the SC is dependent on two major components: (1) the presence of natural hygroscopic agents within the corneocytes (collectively referred to as natural moisturizing factor) and (2) the SC intercellular lipids orderly arranged to form a barrier to transepidermal water loss (TEWL). The water content of the SC is necessary for proper SC maturation and skin desquamation. Increased TEWL impairs enzymatic functions required for normal desquamation resulting in the visible appearance of dry, flaky skin. There have been recent discoveries regarding the complex mechanisms of skin hydration. In particular, it has been discovered that glycerol, a well-known cosmetic ingredient, exists in the SC as a natural endogenous humectant. Hyaluronan, which has been regarded mainly as dermal component, is found in the epidermis and is important for maintaining normal SC structure and epidermal barrier function. More importantly, the discovery of the existence of the water-transporting protein aquaporin-3 in the viable epidermis and the presence of tight junction structures at the junction between the stratum granulosum and SC have brought new insights into the mechanisms of skin water distribution and barrier function. [source]


Microemulsions as colloidal vehicle systems for dermal drug delivery.

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2005
Part V: Microemulsions without, with glycolipid as penetration enhancer
Abstract The aim of this study was to investigate the dermal administration of a highly hydrophilic model drug, diphenhydramine (DPH), in colloidal systems with an aqueous colloidal phase in the presence of a glycolipid (GL) as a penetration modifier. Dermal penetration of DPH, GL, and isopropylpalmitate (IPP) from ME systems without GL and with GL as well as from a hydrogel used as standard formulation were estimated in vitro using human skin. The penetration of the drug, the oil (IPP), and the GL was measured with highly sensitive HPLC, HPLC-MS, and GC-MS assays, respectively. It could be shown that penetration modifier GL is penetrating very fast, and to a high extent into and through the human skin. In contrast, the penetration of IPP used as oily phase in the ME is limited. When incorporated in the ME systems GL and DPH was accumulated in the viable epidermis and in the dermis. Using ME containing a penetration modifier such as GL, a slight additional enhancing effect could be observed, particularly concerning the penetration of DPH into the acceptor fluid when a highly hydrophilic drug such as DPH was applied. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:821,827, 2005 [source]


Reflection and penetration depth of millimeter waves in murine skin

BIOELECTROMAGNETICS, Issue 5 2008
S.I. Alekseev
Abstract Millimeter (mm) wave reflectivity was used to determine murine skin permittivity. Reflection was measured in anesthetized Swiss Webster and SKH1-hairless mice in the 37,74 GHz frequency range. Two skin models were tested. Model 1 was a single homogeneous skin layer. Model 2 included four skin layers: (1) the stratum corneum, (2) the viable epidermis plus dermis, (3) fat layer, and (4) muscle which had infinite thickness. We accepted that the permittivity of skin in the mm wave frequency range results from the permittivity of cutaneous free water which is described by the Debye equation. Using Fresnel equations for reflection we determined the skin parameters best fitting to the reflection data and derived the permittivity of skin layers. The permittivity data were further used to calculate the power density and specific absorption rate profiles, and the penetration depth of mm waves in the skin. In both murine models, mm waves penetrate deep enough into tissue to reach muscle. In human skin, mm waves are mostly absorbed within the skin. Therefore, when extrapolating the effects of mm waves found in animals to humans, it is important to take into account the possible involvement of muscle in animal effects. Bioelectromagnetics 29:340,344, 2008. © 2008 Wiley-Liss, Inc. [source]


A simple and rapid method to assess lycopene in multiple layers of skin samples

BIOMEDICAL CHROMATOGRAPHY, Issue 2 2010
Luciana B. Lopes
Abstract Topical application of lycopene is a convenient way to restore antioxidants depleted from the skin by UV radiation and achieve protection against premature aging and cancer. In this study, a simple, rapid and reproducible method to quantify lycopene in different skin layers was developed, validated and employed to assess this compound after skin penetration studies. Lycopene was extracted from the stratum corneum (SC) and viable epidermis and dermis (ED) by vortex homogenization and bath sonication in a mixture of acetonitrile and methanol (52:48, v/v). Lycopene was assayed by HPLC using a C18 column, and acetonitrile:methanol (52:48, v/v) as mobile phase. The quantification limit of lycopene in samples of SC and ED was 35,ng/mL and the assay was linear from 35 to 2000,ng/mL. Within-day and between-days assays coefficients of variation and relative errors (indicative of precision and accuracy) were less than 15% (or 20% for the limit of quantification). Lycopene recovery from SC and ED was dependent on the spiked concentration: for 50,ng/mL, recoveries were 88.3 and 90.5%; for 100,1000,ng/mL, recoveries were 68.6,74.9%. This method has a potential application for lycopene quantification during formulation development and evaluation in the dermatological field. Copyright © 2009 John Wiley & Sons, Ltd. [source]


UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study

CLINICAL & EXPERIMENTAL DERMATOLOGY, Issue 1 2005
T. Gambichler
Summary In histological studies, it has frequently been demonstrated that ultraviolet (UV) exposure, in particular UVB, can induce significant thickening of the viable epidermis and/or stratum corneum. Since skin biopsy alters the original skin morphology and always requires an iatrogenic trauma, we aimed to introduce optical coherence tomography (OCT) in vivo for the investigation of changes of epidermal thickness (ET) following UVA1 and UVB irradiation. Twelve healthy subjects received daily 60 J/cm2 of UVA1 and 1.5 minimal erythema doses UVB on their upper back over 3 consecutive days. Twenty-four hours after the last irradiation, OCT assessments were performed on UV exposed and adjacent nonirradiated control sites. Data of ET as expressed by comparison of the averaged A-scans differed significantly between nonirradiated (94.2 ± 15.7 µm), UVA1 (105.4 ± 12.8 µm) and UVB (125.7 ± 22.1 µm) exposed sites. In comparison to the nonirradiated sites, UVA1 exposed skin showed significant (P = 0.022) increase of ET of 11% and UVB exposed sites a significant (P < 0.001) increase of 25%. ET of UVA1 and UVB exposed skin sites differed significantly (P =0.005). Our results obtained from OCT in vivo measurements confirm data of previous histological studies indicating that not only erythemogenic doses of UVB, but also suberythemogenic doses of UVA1 may have a significant impact on ET. OCT appears to be a promising bioengineering technique for photobiological studies. However, further studies are needed to establish its measurement precision and validity, and to investigate in vivo spectral dependence on UV induced skin changes such as skin thickening. [source]


Suction blister device for separation of viable epidermis from dermis

CLINICAL & EXPERIMENTAL DERMATOLOGY, Issue 1 2004
R. Falabella
No abstract is available for this article. [source]