Home About us Contact | |||
Very Early Steps (very + early_step)
Selected AbstractsRole of Protein Kinases in the Prolactin-Induced Intracellular Calcium Rise in Chinese Hamster Ovary Cells Expressing the Prolactin ReceptorJOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2000B. Sorin Abstract There is still only limited understanding of the early steps of prolactin signal transduction in target cells. It has been shown that prolactin actions are associated with cell protein phosphorylation, Ca2+ increases, and so on. However, the link between the activation of kinases and calcium influx or intracellular Ca2+ mobilization has not yet been clearly established. Chinese hamster ovary (CHO) cells, stably transfected with the long form of rabbit mammary gland prolactin receptor (PRL-R) cDNA were used for PRL-R signal transduction studies. Spectrofluorimetric techniques were used to measure intracellular calcium ([Ca2+]i) in cell populations with Indo1 as a calcium fluorescent probe. We demonstrate that, although protein kinase C activation (PMA or DiC8) caused a calcium influx in CHO cells, prolactin-induced PKC activation was not responsible for the early effect of prolactin on [Ca2+]i. Activation of protein kinase A (PKA) or protein kinase G did not modify [Ca2+]i and inhibition of PKA pathway did not affect the prolactin response. In the same way, phosphatidylinositol-3 kinaseinhibition had no effect on the prolactin-induced Ca2+ increase. On the other hand, tyrosine kinase inhibitors (herbimycin A, lavendustin A, and genistein) completely blocked the effect of prolactin on [Ca2+]i (influx and release). W7, a calmodulin-antagonist, and a specific inhibitor of calmodulin kinases (KN-62), only blocked prolactin-induced Ca2+ influx but had no significant effect on Ca2+ release. Using pharmacological agents, we present new data concerning the involvement of protein phosphorylations in the early effects of prolactin on ionic channels in CHO cells expressing the long form of PRL-R. Our results suggest that, at least in the very early steps of prolactin signal transduction, serine-threonine phosphorylation does not participate in the prolactin-induced calcium increase. On the other hand, tyrosine phosphorylation is a crucial, very early step, since it controls K+ channel activation, calcium influx, and intracellular calcium mobilization. Calmodulin acts later, since its inhibition only blocks the prolactin-induced Ca2+ influx. [source] A new player in a deadly game: influenza viruses and the PI3K/Akt signalling pathwayCELLULAR MICROBIOLOGY, Issue 6 2009Christina Ehrhardt Summary Upon influenza A virus infection of cells, a wide variety of antiviral and virus-supportive signalling pathways are induced. Phosphatidylinositol-3-kinase (PI3K) is a recent addition to the growing list of signalling mediators that are activated by these viruses. Several studies have addressed the role of PI3K and the downstream effector protein kinase Akt in influenza A virus-infected cells. PI3K/Akt signalling is activated by diverse mechanisms in a biphasic manner and is required for multiple functions during infection. While the kinase supports activation of the interferon regulatory factor-3 during antiviral interferon induction, it also exhibits virus supportive functions. In fact, PI3K not only regulates a very early step during viral entry but also results in suppression of premature apoptosis at later stages of infection. The latter function is dependent on the expression of the viral non-structural protein-1 (A/NS1). It has been shown that PI3K activation occurs by direct interaction of A/NS1 with the p85 regulatory subunit and interaction sites of A/NS1 and p85 have now been mapped in detail. Here, we summarize the current knowledge on influenza virus-induced PI3K signalling and how this pathway supports viral propagation. [source] Selective cross-talk among natural cytotoxicity receptors in human natural killer cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2003Raffaella Augugliaro Abstract The cytolytic activity of human natural killer cells is induced by several triggering cell surface receptors upon interaction with specific cellular ligands. These receptors include NKp46, NKp30 and NKp44, collectively termed natural cytotoxicity receptors (NCR). Co-operation among NCR has been shown to occur for optimal recognition and killing of most tumor target cells. In this study, we show that the mAb-mediated engagement and clustering of one or another NCR results in the activation of an identical set of tyrosine kinases. These kinases are included in the signaling cascade leading to tyrosine phosphorylation of different receptor-associated signal transducing molecules i.e. CD3, (associated with NKp46 and NKp30) and KARAP/DAP12 (associated with NKp44). In line with the notion that the engagement of inhibitory receptors prevents NCR-mediated responses, we show that the engagement of CD94/NKG2A virtually abrogates the tyrosine phosphorylation of the NCR-associated signaling molecules, i.e. it acts at the very early steps of the signaling cascade. Importantly, the engagement of a single NCR resulted in the activation of the signaling cascades associated with the other NCR. This "cross-talk" is confined to NKp46, NKp30 and NKp44 since neither CD16-nor KIR2DS4-associated signaling polypeptides were phosphorylated following the NCR engagement. These results suggest that a functional cross-talk specifically occurs among different NCR, possibly resulting in the amplification of the activating signals. [source] Role of Protein Kinases in the Prolactin-Induced Intracellular Calcium Rise in Chinese Hamster Ovary Cells Expressing the Prolactin ReceptorJOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2000B. Sorin Abstract There is still only limited understanding of the early steps of prolactin signal transduction in target cells. It has been shown that prolactin actions are associated with cell protein phosphorylation, Ca2+ increases, and so on. However, the link between the activation of kinases and calcium influx or intracellular Ca2+ mobilization has not yet been clearly established. Chinese hamster ovary (CHO) cells, stably transfected with the long form of rabbit mammary gland prolactin receptor (PRL-R) cDNA were used for PRL-R signal transduction studies. Spectrofluorimetric techniques were used to measure intracellular calcium ([Ca2+]i) in cell populations with Indo1 as a calcium fluorescent probe. We demonstrate that, although protein kinase C activation (PMA or DiC8) caused a calcium influx in CHO cells, prolactin-induced PKC activation was not responsible for the early effect of prolactin on [Ca2+]i. Activation of protein kinase A (PKA) or protein kinase G did not modify [Ca2+]i and inhibition of PKA pathway did not affect the prolactin response. In the same way, phosphatidylinositol-3 kinaseinhibition had no effect on the prolactin-induced Ca2+ increase. On the other hand, tyrosine kinase inhibitors (herbimycin A, lavendustin A, and genistein) completely blocked the effect of prolactin on [Ca2+]i (influx and release). W7, a calmodulin-antagonist, and a specific inhibitor of calmodulin kinases (KN-62), only blocked prolactin-induced Ca2+ influx but had no significant effect on Ca2+ release. Using pharmacological agents, we present new data concerning the involvement of protein phosphorylations in the early effects of prolactin on ionic channels in CHO cells expressing the long form of PRL-R. Our results suggest that, at least in the very early steps of prolactin signal transduction, serine-threonine phosphorylation does not participate in the prolactin-induced calcium increase. On the other hand, tyrosine phosphorylation is a crucial, very early step, since it controls K+ channel activation, calcium influx, and intracellular calcium mobilization. Calmodulin acts later, since its inhibition only blocks the prolactin-induced Ca2+ influx. [source] Hepatocyte growth factor stimulates cell motility in cultures of the striatal progenitor cells ST14AJOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2003E. Cacci Abstract Hepatocyte growth factor/scatter factor (HGF/SF) is a growth factor with pleiotropic effects on different cell types. It acts as a mitogen and motility factor for many epithelial cells. HGF/SF and its receptor Met are present in the developing and adult mammalian brain and control neuritogenesis of sympathetic and sensory neurons. We report that the striatal progenitor ST14A cells express the Met receptor, which is activated after binding with HGF/SF. The interaction between Met and HGF/SF triggers a signaling cascade that leads to increased levels of c-Jun, c-Fos, and Egr-1 proteins, in agreement with data reported on the signaling events evoked by HGF in other cellular types. We also studied the effects of the exposure of ST14A cells to HGF/SF. By time-lapse photography, we observed that a 24-hr treatment with 50 ng/ml HGF/SF induced modification in cell morphology, with a decrease in cell-cell interactions and increase of cell motility. In contrast, no effect on cell proliferation was observed. To investigate which intracellular pathway is primarily involved we used PD98059 and LY294002, two specific inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAP-kinase/ERK-kinase) and phosphoinositide 3-OH kinase (PI3-K), respectively. Cell motility in HGF/SF treated cultures was inhibited by LY294002 but not by PD98059, suggesting that PI3-K plays a key role in mediating the HGF/SF-induced dissociation of ST14A cells. Previous evidence of HGF stimulation of motility in nervous system has been obtained on postmitotic neurons, which have already acquired their specificity. Data reported here of a motogenic response of ST14A cell line, which displays properties of neuronal progenitors, seem of interest because they suggest that HGF could play a role in very early steps of neurogenesis. © 2003 Wiley-Liss, Inc. [source] |