Vertical Plane (vertical + plane)

Distribution by Scientific Domains
Distribution within Engineering

Selected Abstracts

Response of a double-wedge base-isolation device

J. Enrique Luco
Abstract A novel base-isolation device is described and its performance is compared with that of a friction pendulum bearing. In its simplest form, the device consists of two wedges sliding on a horizontal plane in opposite directions and constrained from retreating by ratchets or bilinear dampers. The superstructure rests at the intersection of the two wedges. For a sufficiently large horizontal acceleration of the base, the structure starts to move up the inclined plane of one of the wedges, which remains fixed while the second wedge is slaved to follow the structure. As the direction of the base acceleration reverses, the process is reversed and the structure starts to climb on the second inclined plane while the first wedge follows. The overall result is that the horizontal acceleration of the structure is reduced with respect to that of the base and that kinetic energy associated with horizontal velocities is systematically transformed into potential energy. In the case of motion in a vertical plane, the device has the following advantages over a friction pendulum: (i) the sliding surface is linear instead of curved, (ii) kinetic energy is systematically transformed into potential energy during the strong ground motion, and (iii) the device is slowly self-centering. Copyright © 2004 John Wiley & Sons, Ltd. [source]

Longitudinal tooth fractures: findings that contribute to complex endodontic diagnoses

The purpose of this review is to describe and discuss the diagnostic and treatment challenges related to tooth fractures primarily in the vertical plane, that is, the long axis of the crown and/or root. This includes when and how to identify and determine the extent of the fracture, when a coronal restoration should be placed, when root canal treatment is needed, and when a tooth or root should be extracted based on the location and extent of the fracture. The term ,longitudinal fractures' is used because they usually represent vertical extensions of fractures over distance and time. These fractures often present problems with diagnosis and treatment, but should be considered as findings only. They are not to be considered as pulpal or periapical diagnoses, but as pathways for bacteria that may induce pulpal and/or periapical inflammation or disease. Longitudinal fractures are divided into five definitive classifications, generally from least to most severe: (1) craze lines; (2) fractured cusp; (3) cracked tooth; (4) split tooth; and (5) vertical root fracture. These differ but have frequently been confused or combined in clinical articles, creating misunderstanding and resulting in incorrect diagnosis and inappropriate treatment. These classifications have been devised to provide global definitions that researchers and clinicians can use to eliminate this confusion. This review is subdivided into these five classifications as to incidence, pathogenesis, clinical features, etiologies, diagnosis, treatment, prognosis, and prevention. [source]

Developmental maturation of ionotropic glutamate receptor subunits in rat vestibular nuclear neurons responsive to vertical linear acceleration

Suk-King Lai
Abstract We investigated the maturation profile of subunits of ionotropic glutamate receptors in vestibular nuclear neurons that were activated by sinusoidal linear acceleration along the vertical plane. The otolithic origin of Fos expression in these neurons was confirmed as a marker of functional activation when labyrinthectomized and/or stationary control rats contrasted by showing sporadically scattered Fos-labeled neurons in the vestibular nuclei. By double immunohistochemistry for Fos and one of the receptor subunits, otolith-related neurons that expressed either ,-amino-3-hydroxy-5-methyl-4-isoxazole-propionate or N -methyl- d -aspartate subunits were first identified in the medial vestibular nucleus, spinal vestibular nucleus and Group x by postnatal day (P)7, and in the lateral vestibular nucleus and Group y by P9. No double-labeled neurons were found in the superior vestibular nucleus. Within each vestibular subnucleus, these double-labeled neurons constituted ,90% of the total Fos-labeled neurons. The percentage of Fos-labeled neurons expressing the GluR1 or NR2A subunit showed developmental invariance in all subnuclei. For Fos-labeled neurons expressing the NR1 subunit, similar invariance was observed except that, in Group y, these neurons decreased from P14 onwards. For Fos-labeled neurons expressing the GluR2, GluR2/3, GluR4 or NR2B subunit, a significant decrease was found by the adult stage. In particular, those expressing the GluR4 subunit showed a two- to threefold decrease in the medial vestibular nucleus, spinal vestibular nucleus and Group y. Also, those expressing the NR2B subunit showed a twofold decrease in Group y. Taken together, the postsynaptic expression of ionotropic glutamate receptor subunits in different vestibular subnuclei suggests that glutamatergic transmission within subregions plays differential developmental roles in the coding of gravity-related vertical spatial information. [source]

X-ray computed tomography of peat soils: measuring gas content and peat structure

Nicholas Kettridge
Abstract The potential of using X-ray computed tomography (CT) to (i) analyse individual biogenic gas bubbles entrapped within peats and (ii) produce reliable descriptors of peat structure is examined. Existing approaches used to study biogenic gas bubbles measure the gas content of volumes of peat many orders of magnitude larger than most bubbles, and are, therefore, of little use in helping to understand bubble dynamics. In many peatland studies, the description of peat structures is derived from only a few relatively basic metrics; principally the porosity, the bulk density, and the von Post humification scale. CT is applied to identify and quantitatively analyse the size, location and shape of individual gas bubbles entrapped during the saturation of a 200 cm3 sample of S. fuscum. 3421 gas bubbles were identified, ranging in size from 0·1 mm3 to 99·9 mm3. These gas bubbles were non-randomly distributed, clustered predominantly in the vertical plane. When analysing the peat structure, Sphagnum peat and water are shown to be indistinguishable within CT scans. Peat samples were therefore prepared prior to scanning by flushing the peat with lead (II) nitrate solution to increase the linear attenuation of the Sphagnum. Sphagnum stems and branches were analysed, producing metrics of the peat structure; including stem and branch lengths, radii and orientation. In a 100 cm3 sample of S. magellanicum, the length of all Sphagnum stems totalled 1·82 m, with an average radius of 0·65 mm. The Sphagnum stems and branches were both preferentially orientated in the horizontal direction. Copyright © 2008 John Wiley & Sons, Ltd. [source]

Two-dimensional prediction of time dependent, turbulent flow around a square cylinder confined in a channel

M. Raisee
Abstract This paper presents two-dimensional and unsteady RANS computations of time dependent, periodic, turbulent flow around a square block. Two turbulence models are used: the Launder,Sharma low-Reynolds number k,, model and a non-linear extension sensitive to the anisotropy of turbulence. The Reynolds number based on the free stream velocity and obstacle side is Re=2.2×104. The present numerical results have been obtained using a finite volume code that solves the governing equations in a vertical plane, located at the lateral mid-point of the channel. The pressure field is obtained with the SIMPLE algorithm. A bounded version of the third-order QUICK scheme is used for the convective terms. Comparisons of the numerical results with the experimental data indicate that a preliminary steady solution of the governing equations using the linear k,, does not lead to correct flow field predictions in the wake region downstream of the square cylinder. Consequently, the time derivatives of dependent variables are included in the transport equations and are discretized using the second-order Crank,Nicolson scheme. The unsteady computations using the linear and non-linear k,, models significantly improve the velocity field predictions. However, the linear k,, shows a number of predictive deficiencies, even in unsteady flow computations, especially in the prediction of the turbulence field. The introduction of a non-linear k,, model brings the two-dimensional unsteady predictions of the time-averaged velocity and turbulence fields and also the predicted values of the global parameters such as the Strouhal number and the drag coefficient to close agreement with the data. Copyright © 2009 John Wiley & Sons, Ltd. [source]

Thermal conductivity of wool and wool,hemp insulation

Z. Ye
Abstract Measurements have been obtained for the thermal resistance of sheep-wool insulation and wool,hemp mixtures, both in the form of bonded insulation batts, using a calibrated guarded hot-box. The density was 9.6,25.9 kg m,3 for the wool and 9.9,18.1 kg m,3 for the wool,hemp mixtures. The measurements were made at a mean sample temperature of 13.3°C using a calibrated guarded hot-box. The estimated uncertainly in the resistance measurements was of the order of ±7%. The thermal conductivity of the samples, derived from the thermal resistance measurements on the basis of the measured thickness, was well correlated with the density, although the variation with density was larger than that obtained in previous studies. The conductivity of the wool,hemp samples was not significantly different from that of the wool samples at the same density. Moisture uptake produced an increase of less than 5% in the conductivity of the bonded wool insulation for an increase in absorbed moisture content of 20%. The thermal resistance was 1.6% lower on average for samples oriented in the horizontal plane rather than the vertical plane, but this difference is not significant. Copyright © 2005 John Wiley & Sons, Ltd. [source]

Validation of the murine aortic arch as a model to study human vascular diseases

Christophe Casteleyn
Abstract Although the murine thoracic aorta and its main branches are widely studied to gain more insight into the pathogenesis of human vascular diseases, detailed anatomical data on the murine aorta are sparse. Moreover, comparative studies between mice and men focusing on the topography and geometry of the heart and aorta are lacking. As this hampers the validation of murine vascular models, the branching pattern of the murine thoracic aorta was examined in 30 vascular corrosion casts. On six casts the intrathoracic position of the heart was compared with that of six younger and six older men of whom contrast-enhanced computer tomography images of the thorax were three-dimensionally reconstructed. In addition, the geometry of the human thoracic aorta was compared with that of the mouse by reconstructing micro-computer tomography images of six murine casts. It was found that the right brachiocephalic trunk, left common carotid artery and left subclavian artery branched subsequently from the aortic arch in both mice and men. The geometry of the branches of the murine aortic arch was quite similar to that of men. In both species the initial segment of the aorta, comprising the ascending aorta, aortic arch and cranial/superior part of the descending aorta, was sigmoidally curved on a cranial/superior view. Although some analogy between the intrathoracic position of the murine and human heart was observed, the murine heart manifestly deviated more ventrally. The major conclusion of this study is that, in both mice and men, the ascending and descending aorta do not lie in a single vertical plane (non-planar aortic geometry). This contrasts clearly with most domestic mammals in which a planar aortic pattern is present. As the vascular branching pattern of the aortic arch is also similar in mice and men, the murine model seems valuable to study human vascular diseases. [source]

Impact of surface tension and viscosity on solids motion in a conical high shear mixer granulator

AICHE JOURNAL, Issue 12 2009
Xianfeng Fan
Abstract Surface tension and viscosity are the important properties of liquid binders affecting wet granulation processes. They could be used to control solids flow pattern and relative motion of particles for controlling wetting, granule growth, consolidation, and breakage. This study aims to investigate experimentally the impacts of the two properties with a conical high shear granulator. The results show significant effects of viscosity and surface tension on solids flow pattern and relative motion of particles. The relative importance of the two parameters, the surface tension and the viscosity, are found to vary with the axial and radial positions in the granulator. For example, the viscosity force decreases with an increase in the bed height in the axial direction (vertical plane). The viscosity force between particles coated with PEG4000 solution is in mN order, whereas that between particles coated with ethanol and water is in ,N order. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]

Hydrodynamic investigation of USP dissolution test apparatus II

Ge Bai
Abstract The USP Apparatus II is the device commonly used to conduct dissolution testing in the pharmaceutical industry. Despite its widespread use, dissolution testing remains susceptible to significant error and test failures, and limited information is available on the hydrodynamics of this apparatus. In this work, laser-Doppler velocimetry (LDV) and computational fluid dynamics (CFD) were used, respectively, to experimentally map and computationally predict the velocity distribution inside a standard USP Apparatus II under the typical operating conditions mandated by the dissolution test procedure. The flow in the apparatus is strongly dominated by the tangential component of the velocity. Secondary flows consist of an upper and lower recirculation loop in the vertical plane, above and below the impeller, respectively. A low recirculation zone was observed in the lower part of the hemispherical vessel bottom where the tablet dissolution process takes place. The radial and axial velocities in the region just below the impeller were found to be very small. This is the most critical region of the apparatus since the dissolving tablet will likely be at this location during the dissolution test. The velocities in this region change significantly over short distances along the vessel bottom. This implies that small variations in the location of the tablet on the vessel bottom caused by the randomness of the tablet descent through the liquid are likely to result in significantly different velocities and velocity gradients near the tablet. This is likely to introduce variability in the test. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 2327,2349, 2007 [source]

Kinematic study of whole body center of mass position during gait in Parkinson's disease patients with and without festination,

Marcelo Merello MD
Abstract Gait festination (FE) can cause serious disability in Parkinson's disease (PD) patients. It is argued that the center of pressure position (COP) and body center of mass (COM) are possibly implicated in FE pathogenesis. The relationship between them remains unclear. The goal of this study was to determine spatiotemporal relationships between COM and COP in PD and to explore whether FE arises as a consequence of lack of physiological link between COP and COM during step stride. Twenty patients with idiopathic PD, in OFF state and 17-age-matched control subjects completed a 10-m walking protocol. PD patients were divided in two groups: those with FE and those without (NF). COM position, excursion, and its relationship with COP, as well as other kinematic parameters were analyzed. COM displacement along the horizontal and vertical plane was significantly lower in FE patients as was the maximum position on the movement direction axis compared with controls or NF patients. Significant difference in minimal COM position in FE patients was also observed. The percentage of stride time during which COM was situated ahead of COP along the movement axis in FE patients was significantly greater than for controls or NF patients. This would seem to indicate that FE patients are constantly attempting to align COP to COM, causing FE. The explanation might be that FE arises as a postural strategy to align COP within the area of COM displacement. Findings illustrate a putative role for postural strategies in the treatment of FE. © 2010 Movement Disorder Society [source]

Computational optimal control of the terminal bunt manoeuvre,Part 2: minimum-time case

S. Subchan
Abstract This is the second part of a paper studies trajectory shaping of a generic cruise missile attacking a fixed target from above. The problem is reinterpreted using optimal control theory resulting in a minimum flight time problem; in the first part the performance index was time-integrated altitude. The formulation entails non-linear, two-dimensional (vertical plane) missile flight dynamics, boundary conditions and path constraints, including pure state constraints. The focus here is on informed use of the tools of computational optimal control, rather than their development. The formulation is solved using a three-stage approach. In stage 1, the problem is discretized, effectively transforming it into a non-linear programming problem, and hence suitable for approximate solution with DIRCOL and NUDOCCCS. The results are used to discern the structure of the optimal solution, i.e. type of constraints active, time of their activation, switching and jump points. This qualitative analysis, employing the results of stage 1 and optimal control theory, constitutes stage 2. Finally, in stage 3, the insights of stage 2 are made precise by rigorous mathematical formulation of the relevant two-point boundary value problems (TPBVPs), using the appropriate theorems of optimal control theory. The TPBVPs obtained from this indirect approach are then solved using BNDSCO and the results compared with the appropriate solutions of stage 1. The influence of boundary conditions on the structure of the optimal solution and the performance index is investigated. The results are then interpreted from the operational and computational perspectives. Copyright © 2007 John Wiley & Sons, Ltd. [source]

Cyst Formation in a Freshwater Strain of the Choanoflagellate Desmarella moniliformis Kent

ABSTRACT. Cyst formation in a freshwater strain of the colonial freshwater Choanoflagellate Desmarella moniliformis Kent (Protozoa; Choanoflagellida) has been studied with light and electron microscopy for the first time. Batch cultures inoculated with motile vegetative cells start to produce cysts within 3 days during the exponential phase of growth. Cyst production proceeds until in late stationary phase there is a preponderance of cysts. Transfer of cysts to fresh medium results in limited excystment. Encystment involves the production of electron-dense fibrillar wall material, firstly around the neck of the cell and then around the posterior end. As the wall material is deposited the neck of the cell elongates and the dictyosome rotates from the horizontal to vertical plane. The number of mitochondrial profiles seen in individual sections of cells increases. Finally the neck of the cell is retracted, the flagellum and collar tentacles are withdrawn, and the bottom of the neck of the cyst wall is sealed with a diaphragm of wall material. Excystment, which has not been observed directly, appears to involve the disruption of the wall at the base of the neck, the remainder of the cyst wall remains intact. Comparisons are made between encystment in Desmarella and cyst development in other protists. [source]

Tracking large solid constructs suspended in a rotating bioreactor: A combined experimental and theoretical study

L.J. Cummings
Abstract We present a combined experimental and theoretical study of the trajectory of a large solid cylindrical disc suspended within a fluid-filled rotating cylindrical vessel. The experimental set-up is relevant to tissue-engineering applications where a disc-shaped porous scaffold is seeded with cells to be cultured, placed within a bioreactor filled with nutrient-rich culture medium, which is then rotated in a vertical plane to keep the growing tissue construct suspended in a state of "free fall." The experimental results are compared with theoretical predictions based on the model of Cummings and Waters (2007), who showed that the suspended disc executes a periodic motion. For anticlockwise vessel rotation three regimes were identified: (i) disc remains suspended at a fixed position on the right-hand side of the bioreactor; (ii) disc executes a periodic oscillatory motion on the right-hand side of the bioreactor; and (iii) disc orbits the bioreactor. All three regimes are captured experimentally, and good agreement between theory and experiment is obtained. For the tissue engineering application, computation of the fluid dynamics allows the nutrient concentration field surrounding a tissue construct (a property that cannot be measured experimentally) to be determined (Cummings and Waters, 2007). The implications for experimental cell-culture protocols are discussed. Biotechnol. Bioeng. 2009; 104: 1224,1234. © 2009 Wiley Periodicals, Inc. [source]

Tracking larval insect movement within soil using high resolution X-ray microtomography

Scott N. Johnson
Abstract., 1. In contrast to above-ground insects, comparatively little is known about the behaviour of subterranean insects, due largely to the difficulty of studying them in situ. 2. The movement of newly hatched (neonate) clover root weevil (Sitona lepidus L. Coleoptera: Curculinidae) larvae was studied non-invasively using recently developed high resolution X-ray microtomography. 3. The movement and final position of S. lepidus larvae in the soil was reliably established using X-ray microtomography, when compared with larval positions that were determined by destructively sectioning the soil column. 4. Newly hatched S. lepidus larvae were seen to attack the root rhizobial nodules of their host plant, white clover (Trifolium repens L.). Sitona lepidus larvae travelled between 9 and 27 mm in 9 h at a mean speed of 1.8 mm h,1. 5. Sitona lepidus larvae did not move through the soil in a linear manner, but changed trajectory in both the lateral and vertical planes. [source]

Interaction between wind-induced seiches and convective cooling governs algal distribution in a canyon-shaped reservoir

Summary 1. Wind is considered the dominant factor controlling phytoplankton distribution in lentic environments. In canyon-shaped reservoirs, wind tends to blow along the main axis generating internal seiches and advective water movements that jointly with biological features of algae can produce a heterogeneous phytoplankton distribution. Turbulence generated by wind stress and convection will also affect the vertical distribution of algae, depending on their sinking properties. 2. We investigated the vertical and horizontal distribution of phytoplankton during the stratification period in Sau Reservoir (NE Spain). Sites along the main reservoir axis were sampled every 4 h for 3 days, and profiles of chlorophyll- a and temperature were made using a fluorescent FluoroProbe, which can discriminate among the main algal groups. Convective and wind shear velocity scales, and energy dissipation were calculated from meteorological data, and simulation experiments were performed to describe non-measured processes, like vertical advection and sinking velocity of phytoplankton. 3. Wind direction changed from day to night, producing a diel thermocline oscillation and an internal seiche. Energy dissipation was moderate during the night, and mainly attributed to convective cooling. During the day the energy dissipation was entirely attributed to wind shear, but values indicated low turbulence intensity. 4. The epilimnetic algal community was mainly composed of diatoms and chlorophytes. Chlorophytes showed a homogeneous distribution on the horizontal and vertical planes. Diatom horizontal pattern was also homogeneous, because the horizontal advective velocities generated by wind forcing were not high enough to develop phytoplankton gradients along the reservoir. 5. Diatom vertical distribution was heterogeneous in space and time. Different processes dominated in different regions of the reservoir, due to the interaction between seiching and the daily cycle of convective-mediated turbulence. As the meteorological forcing followed a clear daily pattern, we found very different diatom sedimentation dynamics between day and night. Remarkably, these dynamics were asynchronous in the extremes of the seiche, implying that under the same meteorological forcing a diatom population can show contrasting sedimentation dynamics at small spatial scales (approximately 103 m). This finding should be taken into account when interpreting paleolimnological records from different locations in a lake. 6. Vertical distribution of non-motile algae is a complex process including turbulence, vertical and horizontal advection, variations in the depth of the mixing layer and the intrinsic sinking properties of the organisms. Thus, simplistic interpretations considering only one of these factors should be regarded with caution. The results of this work also suggest that diatoms can persist in stratified water because of a synergistic effect between seiching and convective turbulence. [source]

Mechanics of land subsidence due to groundwater pumping

Muniram Budhu
Abstract This paper presents the formulation of the basic mechanics governing the changes in stress states from groundwater pumping and comparisons among predicted land subsidence from this mechanics with existing analyses and field data. Land subsidence is a growing, global problem caused by petroleum and groundwater withdrawal, mining operations, natural settlement, hydro-compaction, settlement of collapsible soils, settlement of organic soils and sinkholes. This paper is concerned with the land subsidence due to groundwater level decline by groundwater pumping. It is shown that the stress state consists of asymmetric stresses that are best simulated by a Cosserat rather than a Cauchy continuum. Land subsidence from groundwater level decline consists of vertical compression (consolidation), shear displacement and macro-rotation. The latter occurs when conditions are favorable (e.g. at a vertical interface) for the micro-rotation imposed by asymmetric stresses to become macro-rotation. When the length of the cone of depression is beyond ,2 times the thickness of the aquifer, simple shear on vertical planes with rotation is the predominant deformation mode. Otherwise, simple shear on horizontal planes is present. The predicted subsidence using the mechanics developed in this paper compares well with data from satellite-borne interferometric synthetic aperture radar. Copyright © 2009 John Wiley & Sons, Ltd. [source]

Moisture adsorption by milk whey protein films

C. M. P. Yoshida
Edible films, using whey protein as the structural matrix, were tested for water vapour diffusion properties. Whey protein films were prepared by dispersing 6.5% whey protein concentrate (WPC) in distilled water with pH kept at 7.0. Glycerol was the plasticizer agent. Film slabs (13.5 × 3.5 cm) were put in a chamber at 25 °C and 75% relative humidity, being held in vertical planes for different periods of time. The mass gain was determined throughout the experiment. We show that moisture adsorption by milk whey protein films is well described by a linear diffusion equation model. After an adsorption experiment was performed the solution of the diffusion equation was fitted to the data to determine the diffusion coefficient of the material. [source]

Optimal setpoint chasing in dynamic positioning of deep-water drilling and intervention vessels

Asgeir J. Sørensen
Abstract Conventional controller designs for dynamic positioning of ships and floating marine structures have so far been based on the principle on automatic positioning in the horizontal-plane about desired position and heading co-ordinates defined by the operator. A three degrees-of-freedom multivariable controller either of linear or nonlinear type, normally with feedback signals from surge, sway and yaw position and velocities, has been regarded as adequate for the control objective. For floating structures with small waterplane area such as semi-submersibles, feedback from roll and pitch angular rotation velocity may also be included to avoid thrust-induced roll and pitch motions that are caused by the hydrodynamic and the geometrical couplings between the horizontal and vertical planes. However, for certain marine operations this control philosophy may not be the most appropriate approach ensuring safety and cost effectiveness. For drilling and work-over operations the main positioning objective is to minimize the bending stresses along the riser and the riser angle magnitudes at the well head on the subsea structure, and at the top joint as well. A positioning control strategy solely based on manual setting of the desired position co-ordinates may not be the most optimal solution for these applications. In this paper a new hybrid dynamic positioning controller, that also accounts for riser angle offsets and bending stresses is proposed. It is shown that a significant reduction in riser angle magnitude can be achieved. Simulations with a drilling semi-submersible demonstrate the effect of the proposed control strategy. Copyright © 2001 John Wiley & Sons, Ltd. [source]