Home About us Contact | |||
Vertebrate Tissues (vertebrate + tissue)
Selected AbstractsThe case for sequencing the genome of the electric eel Electrophorus electricusJOURNAL OF FISH BIOLOGY, Issue 2 2008J. S. Albert A substantial international community of biologists have proposed the electric eel Electrophorus electricus (Teleostei: Gymnotiformes) as an important candidate for genome sequencing. In this study, the authors outline the unique advantages that a genome sequencing project of this species would offer society for developing new ways of producing and storing electricity. Over tens of millions of years, electric fish have evolved an exceptional capacity to generate a weak (millivolt) electric field in the water near their body from specialized muscle-derived electric organs, and simultaneously, to sense changes in this field that occur when it interacts with foreign objects. This electric sense is used both to navigate and orient in murky tropical waters and to communicate with other members of the same species. Some species, such as the electric eel, have also evolved a strong voltage organ as a means of stunning prey. This organism, and a handful of others scattered worldwide, convert chemical energy from food directly into workable electric energy and could provide important clues on how this process could be manipulated for human benefit. Electric fishes have been used as models for the study of basic biological and behavioural mechanisms for more than 40 years by a large and growing research community. These fishes represent a rich source of experimental material in the areas of excitable membranes, neurochemistry, cellular differentiation, spinal cord regeneration, animal behaviour and the evolution of novel sensory and motor organs. Studies on electric fishes also have tremendous potential as a model for the study of developmental or disease processes, such as muscular dystrophy and spinal cord regeneration. Access to the genome sequence of E. electricus will provide society with a whole new set of molecular tools for understanding the biophysical control of electromotive molecules, excitable membranes and the cellular production of weak and strong electric fields. Understanding the regulation of ion channel genes will be central for efforts to induce the differentiation of electrogenic cells in other tissues and organisms and to control the intrinsic electric behaviours of these cells. Dense genomic sequence information of E. electricus will also help elucidate the genetic basis for the origin and adaptive diversification of a novel vertebrate tissue. The value of existing resources within the community of electric fish research will be greatly enhanced across a broad range of physiological and environmental sciences by having a draft genome sequence of the electric eel. [source] Myosin light chain kinase colocalizes with nonmuscle myosin IIB in myofibril precursors and sarcomeric Z-lines of cardiomyocytesCYTOSKELETON, Issue 7 2006T. V. Dudnakova Abstract Myosin light chain kinase (MLCK) is a key regulator of various forms of cell motility involving actin and myosin II. MLCK is widely present in vertebrate tissues including the myocardium. However, the role of MLCK in cardiomyocyte function is not known. Previous attempts to gain insight into possible roles and identify potential molecular partners were disappointing and equivocal due to cross reactivity of early antibodies with striated muscle MLCK, which has a different genetic locus and a divergent amino acid sequence from the abovementioned enzyme. Using an immunofluorescence approach and a panel of antibodies directed against MLCK, cytoskeletal, and sarcomeric proteins, we localized MLCK to myofibril precursors and Z-lines of sarcomeres in embryonic and adult cardiomyocytes. The same structures contained nonmuscle myosin IIB implicating this protein as a possible target of MLCK. Our results suggest a role for MLCK in cardiomyocyte differentiation and contraction through regulation of nonmuscle myosin IIB. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source] Is there a role for thyroid hormone on spermatogenesis?MICROSCOPY RESEARCH AND TECHNIQUE, Issue 11 2009Marcia Santos Wagner Abstract Appropriate level of thyroid hormone is essential for normal development and metabolism in most vertebrate tissues and altered thyroid status impacts adversely on them. For many years the testis was regarded as a thyroid hormone unresponsive organ, but consistent evidence accumulated in the past two decades has definitively changed this classical view. Currently, the concept that thyroid hormone plays a critical role in testis development, in rats and other vertebrate species, is clearly established. Although the effects of thyroid hormone on Sertoli and Leydig cells in the immature testis are well described, its role on the adult organ remains controversial. In this review, we summarize and discuss the recent development on the thyroid hormone effects in immature and adult testes. Particularly, we have attempted to address the role of thyroid hormone in the regulation of spermatogenesis, emphasizing recent data that suggest its involvement in germ cells differentiation and survival. Microsc. Res. Tech. 2009. © 2009 Wiley-Liss, Inc. [source] Can aspirin help identify leaf proteins active in defence responses?ANNALS OF APPLIED BIOLOGY, Issue 3 2002W S PIERPOINT Summary The oxidation of arachidonic acid in vertebrate tissues is briefly compared to the oxidation of linolenic acid in plants. Both give rise to bio-active molecules containing cyclopentane rings, the prostaglandins and jasmonic acid respectively. Both oxidations are inhibited by salicylic acid, aspirin and other non-steroidal, anti-inflammatory drugs. Aspirin is known to inhibit the cyclising enzyme, cyclo-oxygenase in animal tissues. By contrast it is thought to inhibit allene oxide synthase (AOS) rather than the analogous cyclising enzyme in plants. This conclusion is based on studies of an unusual isoform of AOS, and it is suggested that a search should be made for aspirin-acetylatable proteins in extracts of the leaves of temperate crop plants. The possible reaction of aspirin with the unusual AOS produced by sea corals is briefly considered. [source] |