Home About us Contact | |||
Vertebrate Lineage (vertebrate + lineage)
Selected AbstractsComparative expression analysis of transcription factor genes in the endostyle of invertebrate chordatesDEVELOPMENTAL DYNAMICS, Issue 3 2005Jin Hiruta Abstract The endostyle of invertebrate chordates is a pharyngeal organ that is thought to be homologous with the follicular thyroid of vertebrates. Although thyroid-like features such as iodine-concentrating and peroxidase activities are located in the dorsolateral part of both ascidian and amphioxus endostyles, the structural organization and numbers of functional units are different. To estimate phylogenetic relationships of each functional zone with special reference to the evolution of the thyroid, we have investigated, in ascidian and amphioxus, the expression patterns of thyroid-related transcription factors such as TTF-2/FoxE4 and Pax2/5/8, as well as the forkhead transcription factors FoxQ1 and FoxA. Comparative gene expression analyses depicted an overall similarity between ascidians and amphioxus endostyles, while differences in expression patterns of these genes might be specifically related to the addition or elimination of a pair of glandular zones. Expressions of Ci-FoxE and BbFoxE4 suggest that the ancestral FoxE class might have been recruited for the formation of thyroid-like region in a possible common ancestor of chordates. Furthermore, coexpression of FoxE4, Pax2/5/8, and TPO in the dorsolateral part of both ascidian and amphioxus endostyles suggests that genetic basis of the thyroid function was already in place before the vertebrate lineage. Developmental Dynamics 233:1031,1037, 2005. © 2005 Wiley-Liss, Inc. [source] The amphioxus T-box gene, AmphiTbx15/18/22, illuminates the origins of chordate segmentationEVOLUTION AND DEVELOPMENT, Issue 2 2006Laura Beaster-Jones SUMMARY Amphioxus and vertebrates are the only deuterostomes to exhibit unequivocal somitic segmentation. The relative simplicity of the amphioxus genome makes it a favorable organism for elucidating the basic genetic network required for chordate somite development. Here we describe the developmental expression of the somite marker, AmphiTbx15/18/22, which is first expressed at the mid-gastrula stage in dorsolateral mesendoderm. At the early neurula stage, expression is detected in the first three pairs of developing somites. By the mid-neurula stage, expression is downregulated in anterior somites, and only detected in the penultimate somite primordia. In early larvae, the gene is expressed in nascent somites before they pinch off from the posterior archenteron (tail bud). Integrating functional, phylogenetic and expression data from a variety of triploblast organisms, we have reconstructed the evolutionary history of the Tbx15/18/22 subfamily. This analysis suggests that the Tbx15/18/22 gene may have played a role in patterning somites in the last common ancestor of all chordates, a role that was later conserved by its descendents following gene duplications within the vertebrate lineage. Furthermore, the comparison of expression domains within this gene subfamily reveals similarities in the genetic bases of trunk and cranial mesoderm segmentation. This lends support to the hypothesis that the vertebrate head evolved from an ancestor possessing segmented cranial mesoderm. [source] The evolution of teleost pigmentation and the fish-specific genome duplicationJOURNAL OF FISH BIOLOGY, Issue 8 2008I. Braasch Teleost fishes have evolved a unique complexity and diversity of pigmentation and colour patterning that is unmatched among vertebrates. Teleost colouration is mediated by five different major types of neural-crest derived pigment cells, while tetrapods have a smaller repertoire of such chromatophores. The genetic basis of teleost colouration has been mainly uncovered by the cloning of pigmentation genes in mutants of zebrafish Danio rerio and medaka Oryzias latipes. Many of these teleost pigmentation genes were already known as key players in mammalian pigmentation, suggesting partial conservation of the corresponding developmental programme among vertebrates. Strikingly, teleost fishes have additional copies of many pigmentation genes compared with tetrapods, mainly as a result of a whole-genome duplication that occurred 320,350 million years ago at the base of the teleost lineage, the so-called fish-specific genome duplication. Furthermore, teleosts have retained several duplicated pigmentation genes from earlier rounds of genome duplication in the vertebrate lineage, which were lost in other vertebrate groups. It was hypothesized that divergent evolution of such duplicated genes may have played an important role in pigmentation diversity and complexity in teleost fishes, which therefore not only provide important insights into the evolution of the vertebrate pigmentary system but also allow us to study the significance of genome duplications for vertebrate biodiversity. [source] Polyploidy in vertebrate ancestry: Ohno and beyondBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2004REBECCA F. FURLONG Over 30 years ago, Susumu Ohno proposed that two rounds of polyploidy occurred early in vertebrate evolution. We re-examine this proposal using three recent lines of evidence. First, total gene number estimates from completely sequenced genomes suggest an increase in total gene number somewhere along the vertebrate or prevertebrate lineage, compatible with Ohno's model. Second, analyses of homeobox and other genes from amphioxus reveal very extensive gene duplication specifically on the vertebrate lineage. This refines the timing of putative polyploidy to after the divergence of amphioxus and vertebrates. Third, the existence of four-fold paralogy regions in the human genome is suggestive of two rounds of polyploidy, although other explanations are possible. We propose an experimental test, based on chromosomal localization of genes in amphioxus, that should resolve whether paralogy regions are indeed remnants of duplication in vertebrate ancestry. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82, 425,430. [source] Neurotrophic activities of trk receptors conserved over 600 million years of evolutionDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2004Gad Beck Abstract The trk family of receptor tyrosine kinases is crucial for neuronal survival in the vertebrate nervous system, however both C. elegans and Drosophila lack genes encoding trks or their ligands. The only invertebrate representative of this gene family identified to date is Ltrk from the mollusk Lymnaea. Did trophic functions of trk receptors originate early in evolution, or were they an innovation of the vertebrates? Here we show that the Ltrk gene conserves a similar exon/intron order as mammalian trk genes in the region encoding defined extracellular motifs, including one exon encoding a putative variant immunoglobulin-like domain. Chimeric receptors containing the intracellular and transmembrane domains of Ltrk undergo ligand-induced autophosphorylation followed by MAP kinase activation in transfected cells. The chimeras are internalized similarly to TrkA in PC12 cells, and their stimulation leads to differentiation and neurite extension. Knock-down of endogenous Ltrk expression compromises outgrowth and survival of Lymnaea neurons cultured in CNS-conditioned medium. Thus, Ltrk is required for neuronal survival, suggesting that trophic activities of the trk receptor family originated before the divergence of molluscan and vertebrate lineages approximately 600 million years ago. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 12,20, 2004 [source] The dynamic TCR,: TCR, chains in the amphibian Xenopus tropicalis utilize antibody-like V genesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2010Zuly E. Parra Abstract The content and organization of the Xenopus tropicalis TCR,/, locus was determined. This locus is highly conserved among tetrapods, with the genes encoding the TCR, chains embedded with those encoding TCR,. However, the frog TCR,/, is unusual in that it contains V genes that appear indistinguishable from those in the IgH locus (VH). These V genes, termed VH,, make up 70% of the V genes at the TCR, locus and are expressed exclusively in TCR, chains. Finding TCR, chains that use antibody-like V domains in frogs is similar to the situation in shark TCR, variants and TCR, in marsupials. These results suggest that such unconventional TCR may be more widespread across vertebrate lineages than originally thought and raise the possibility of previously unrealized subsets of T cells. We also revealed close linkage of TCR,/,, IgH, and Ig, in Xenopus which, in combination with linkage analyses in other species, is consistent with the previous models for the emergence of these antigen receptor loci. [source] Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolutionEVOLUTION AND DEVELOPMENT, Issue 1 2005Shigehiro Kuraku Summary The turtle shell is an evolutionary novelty in which the developmental pattern of the ribs is radically modified. In contrast to those of other amniotes, turtle ribs grow laterally into the dorsal dermis to form a carapace. The lateral margin of carapacial primordium is called the carapacial ridge (CR), and is thought to play an essential role in carapace patterning. To reveal the developmental mechanisms underlying this structure, we systematically screened for genes expressed specifically in the CR of the Chinese soft-shelled turtle, Pelodiscus sinensis, using microbead-based differential cDNA analysis and real-time reverse transcription-polymerase chain reaction. We identified orthologs of Sp5, cellular retinoic acid-binding protein-I (CRABP-I), adenomatous polyposis coli down-regulated 1 (APCDD1), and lymphoid enhancer-binding factor-1 (LEF-1). Although these genes are conserved throughout the major vertebrate lineages, comparison of their expression patterns with those in chicken and mouse indicated that these genes have acquired de novo expression in the CR in the turtle lineage. In association with the expression of LEF-1, the nuclear localization of ,-catenin protein was detected in the CR ectoderm, suggesting that the canonical Wnt signaling triggers carapace development. These findings indicate that the acquisition of the turtle shell did not involve the creation of novel genes, but was based on the co-option of pre-existing genes. [source] Amphibian teeth: current knowledge, unanswered questions, and some directions for future researchBIOLOGICAL REVIEWS, Issue 1 2007Tiphaine Davit-Béal Abstract Elucidation of the mechanisms controlling early development and organogenesis is currently progressing in several model species and a new field of research, evolutionary developmental biology, which integrates developmental and comparative approaches, has emerged. Although the expression pattern of many genes during tooth development in mammals is known, data on other lineages are virtually non-existent. Comparison of tooth development, and particularly of gene expression (and function) during tooth morphogenesis and differentiation, in representative species of various vertebrate lineages is a prerequisite to understand what makes one tooth different from another. Amphibians appear to be good candidates for such research for several reasons: tooth structure is similar to that in mammals, teeth are renewed continuously during life ( = polyphyodonty), some species are easy to breed in the laboratory, and a large amount of morphological data are already available on diverse aspects of tooth biology in various species. The aim of this review is to evaluate current knowledge on amphibian teeth, principally concerning tooth development and replacement (including resorption), and changes in morphology and structure during ontogeny and metamorphosis. Throughout this review we highlight important questions which remain to be answered and that could be addressed using comparative morphological studies and molecular techniques. We illustrate several aspects of amphibian tooth biology using data obtained for the caudate Pleurodeles waltl. This salamander has been used extensively in experimental embryology research during the past century and appears to be one of the most favourable amphibian species to use as a model in studies of tooth development. [source] |