Ventral Portion (ventral + portion)

Distribution by Scientific Domains


Selected Abstracts


Development of the pons in human fetuses

CONGENITAL ANOMALIES, Issue 2 2007
Toshihisa Hatta
ABSTRACT Morphometric and histological studies of the pons were performed by light microscopy in 28 cases of externally normal human fetuses ranging from 90 to 246 mm in crown-rump length (CRL) and from 13 to 28 weeks of gestation. The brainstems of fetuses were embedded in celloidin or paraffin, and transverse sections were prepared. The pons was divided into two regions at the most ventral margin of the medial lemniscus at the level of the motor trigeminal nucleus. The relationships between the total dorsoventral length, ventral length, and dorsal length of the pons versus CRL and gestational ages were calculated, and empiric formulas were fitted. It was found that the ventral portion increased in size more rapidly than the dorsal portion. The proportion of the ventral portion in the total dorsoventral length was constitutively higher than that of the dorsal portion in the present range of CRL. In the pontine nuclei, from 235 mm in the CRL, some large cells with rich cytoplasm, pale nuclei, and a distinct nucleolus appeared on the dorsal side of the pyramidal tract. According to Weigert stained preparations, the first myelinated fibers in each motor root of the trigeminal, abducent, and facial nerves were recognized at 130,140 mm in CRL and the medial lemniscus at 230,235 mm. [source]


The tritocerebrum and the clypeolabrum in mandibulate arthropods: segmental interpretations

ACTA ZOOLOGICA, Issue 3 2010
Jacques Bitsch
Abstract Bitsch, J. and Bitsch, C. 2010. The tritocerebrum and the clypeolabrum in mandibulate arthropods: segmental interpretations. ,Acta Zoologica (Stockholm) 91: 249,266 Different interpretations of the segmental composition of the head in mandibulate arthropods are critically reviewed, with particular focus on three closely associated structures: the tritocerebrum, the stomatogastric nervous system and the clypeolabrum. The main conclusions arising from the different discussions are the following. (1) Each tritocerebral ganglion has a dual composition, clearly discernable in some crustacean and hexapod species, including a dorsal portion connected with the second antennae and a ventral portion connected with the stomatogastric nervous system via the frontal ganglion. (2) The suboesophageal commissure linking the tritocerebral lobes of the two sides, can be wholly ascribed to the tritocerebral segment. (3) The stomatogastric nervous system is a morphologically autonomous system that is not fundamentally affected by head metamerization. (4) The clypeolabrum, the epistome,labrum and the hypostome are regarded as homologous formations. The clypeolabrum represents a fundamental structure of the head probably present in the arthropod ground plan. Its close spatial and developmental association with the stomodeum and its derivative, the stomatogastric nervous system, suggests that it is an anterior outgrowth of the forehead arising from a preoral territory (presegmental acron or protocerebral,ocular region?) and secondarily connected with the tritocerebrum, rather than derived from a pair of reduced appendages. [source]


A comparative study of mammalian tracheal mucous glands

JOURNAL OF ANATOMY, Issue 3 2000
H. K. CHOI
We have compared the distribution, numbers and volume of mucous glands in the tracheas of 11 mammalian species. No glands were present in the rabbit. The mouse only contained glands at the border between the trachea and larynx. In the rat, glands were commonest in the cephalad third of the trachea, but on average were much scarcer than in the larger species. Between species, there was a significant correlation between airway diameter and gland volume per unit surface area, suggesting that the rate of deposition of inhaled particles may increase in large airways. In the ventral portion of the trachea of about half the species, the glands were concentrated between the cartilaginous rings; in others they were evenly distributed over and between the rings. In most species in which the trachealis muscle attached to the internal surface of the cartilaginous rings, the glands were external to the muscle. In all species in which the muscle attached to the external surface of the cartilaginous rings, the glands were internal to the muscle. In the ox, goat, dog and sheep, the volume of glands per unit tracheal surface area was markedly greater in the ventral than the dorsal aspect of the trachea. The reverse was true of the pig. In humans, gland density in the 2 regions was similar. The frequency of gland openings was determined in the ox, goat, pig, dog and sheep tracheas, and ranged from 0.3 per mm2 in the dorsal portion of the sheep trachea to 1.5 per mm2 in the ventral portion of the ox trachea. For these 5 species, the volume of gland acini per unit luminal surface area varied linearly with the numbers of gland openings, with the volume of individual glands being constant at , 120 nl. [source]


Venous congestive myelopathy of the cervical spinal cord: An autopsy case showing a rapidly progressive clinical course

NEUROPATHOLOGY, Issue 3 2007
Akio Kimura
We report a rapidly progressive myelopathy in a 74-year-old Japanese man who was admitted to our hospital with a 4-month history of progressive gait disturbance and died of pneumonia followed by respiratory failure on the 22nd day of admission. During the course of his illness, magnetic resonance imaging (MRI) revealed intramedullary lesions with edematous swelling from the medulla oblongata to the spinal cord at the level of the fourth vertebra. After administration of contrast medium, the ventral portion of the lesion was mildly and irregularly enhanced and a dilated vessel was recognized along the ventral surface of the upper cervical cord. At autopsy, ischemic changes were observed in the upper-to-middle cervical cord segments, with so-called arterialized veins in the subarachnoid space. No neoplastic lesions were found within or outside the brain and spinal cord. These pathological findings were essentially those of venous congestive myelopathy (VCM) associated with dural arteriovenous fistulae (AVF), formerly known as Foix,Alajouanine syndrome. VCM associated with dural AVF, which is now considered to be treatable in the early stages, is rare found in the cervical spinal cord. The present autopsy case, with MRI findings, provides further information that might be useful for recognition and diagnosis. [source]


Regional Analysis of the Ependyma of the Third Ventricle of Rat by Light and Electron Microscopy

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 1 2008
T. C. Mathew
Summary Ependymal lining of cerebral ventricles lies at the interface between the ventricular cavities and the brain parenchyma. Ependymal cells are involved in various functions within the brain and play a major role in the production of the chemical principals of the cerebrospinal fluid. Histological studies on the regional variation of the third ventricular ependyma and the subependyma of adult rats were carried out by light and electron microscopic methods. For light microscopic analysis, methacrylate sections were used. In addition to the routine haematoxylin and eosin (H and E) staining for histological studies, the sections were stained with toluidine blue, cresyl violet and periodic acid Schiff's reagent (PAS). A regional analysis of the ependyma of the third ventricle showed that in most regions the ependyma was monolayered. The sidewalls and floor of the ventral portion of the third ventricle showed a multilayered ependyma. For descriptive purposes at the light microscopic level, the ependymal cells were classified, based on the cell shape (flat, cuboidal or columnar), presence or absence of cilia and the number of cytoplasmic granules present in the cells. Studies of transmission electron microscope have shown that these granules represent the cell organelles of the ependyma. The subependyma also showed a regional morphological variation, and, in most instances, contained glial and neuronal elements. In regions of specific brain nuclei, neurons were the major cell type of the subependyma. PAS staining did not show any positive granules in the ependymal cytosol. Characteristic supraependymal elements were present at the ependymal surface of the third ventricle. [source]


Microanatomy of the Mandibular Symphysis in Lizards: Patterns in Fiber Orientation and Meckel's Cartilage and Their Significance in Cranial Evolution

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 8 2010
Casey M. Holliday
Abstract Although the mandibular symphysis is a functionally and evolutionarily important feature of the vertebrate skull, little is known about the soft-tissue morphology of the joint in squamate reptiles. Lizards evolved a diversity of skull shapes and feeding behaviors, thus it is expected that the morphology of the symphysis will correspond with functional patterns. Here, we present new histological data illustrating the morphology of the joint in a number of taxa including iguanians, geckos, scincomorphs, lacertoids, and anguimorphs. The symphyses of all taxa exhibit dorsal and ventral fibrous portions of the joints that possess an array of parallel and woven collagen fibers. The middle and ventral portions of the joints are complemented by contributions of Meckel's cartilage. Kinetic taxa have more loosely built symphyses with large domains of parallel-oriented fibers whereas hard biting and akinetic taxa have symphyses primarily composed of dense, woven fibers. Whereas most taxa maintain unfused Meckel's cartilages, iguanians, and geckos independently evolved fused Meckel's cartilages; however, the joint's morphologies suggest different developmental mechanisms. Fused Meckel's cartilages may be associated with the apomorphic lingual behaviors exhibited by iguanians (tongue translation) and geckos (drinking). These morphological data shed new light on the functional, developmental, and evolutionary patterns displayed by the heads of lizards. Anat Rec 293:1350,1359, 2010. © 2010 Wiley-Liss, Inc. [source]