Vesicular Transporter (vesicular + transporter)

Distribution by Scientific Domains


Selected Abstracts


Cell-type-specific limitation on in vivo serotonin storage following ectopic expression of the Drosophila serotonin transporter, dSERT

DEVELOPMENTAL NEUROBIOLOGY, Issue 5 2006
Sang Ki Park
Abstract The synaptic machinery for neurotransmitter storage is cell-type specific. Although most elements of biosynthesis and transport have been identified, it remains unclear whether additional factors may be required to maintain this specificity. The Drosophila serotonin transporter (dSERT) is normally expressed exclusively in serotonin (5-HT) neurons in the CNS. Here we examine the effects of ectopic transcriptional expression of dSERT in the Drosophila larval CNS. We find a surprising limitation on 5-HT storage following ectopic expression of dSERT and green fluorescence protein-tagged dSERT (GFP-dSERT). When dSERT transcription is driven ectopically in the CNS, 5-HT is detectable only in 5-HT, dopamine (DA), and a very limited number of additional neurons. Addition of exogenous 5-HT does not dramatically broaden neuronal storage sites, so this limitation is only partly due to restricted intercellular diffusion of 5-HT. Furthermore, this limitation is not due to gross mislocalization of dSERT, because cells lacking or containing 5-HT show similar levels and subcellular distribution of GFP-dSERT protein, nor is it due to lack of the vesicular transporter, dVMAT. These data suggest that a small number of neurons selectively express factor(s) required for 5-HT storage, and potentially for function of dSERT. 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


Nucleoside transporter and nucleotide vesicular transporter: Two examples of mnemonic regulation

DRUG DEVELOPMENT RESEARCH, Issue 1-2 2001
Raquel P. Sen
Abstract According to their relevant roles in the regulation and availability of extracellular levels of purinergic signals, the nucleoside transporter and the nucleotide vesicular transporter are subject to acute regulation. The plasma membrane nucleoside transporter has been shown to exhibit several regulatory mechanisms, such as regulation by long-term signals, phosphorylation/dephosphorylation processes, and allosteric modulation. The present work reviews studies concerning allosteric modulation of nucleoside and nucleotide vesicular transporters, as the first reported examples of mnemonic behavior in transporter proteins, presenting kinetic and allosteric cooperativity. This fact implies that the protein can exhibit different conformations, each one with specific kinetic parameters. Transport substrates are able to induce slow conformational changes between the different forms of the transporter. This kinetic mechanism can provide several physiological advantages, since it allows strict control of transport capacity by changes in substrate concentrations. This allosteric modulation has been confirmed in several experimental models, the nucleoside transporter in chromaffin and endothelial cells from adrenal medulla and the nucleotide vesicular transporter in the chromaffin cell granules and rat brain synaptic vesicles. Taking into account these considerations, the mnemonic regulation described here could be a widespread mechanism among transporter proteins. Drug Dev. Res. 52:11,21, 2001. 2001 Wiley-Liss, Inc. [source]


Catecholamine exocytosis is diminished in R6/2 Huntington's disease model mice

JOURNAL OF NEUROCHEMISTRY, Issue 5 2007
Michael A. Johnson
Abstract In this work, the mechanisms responsible for dopamine (DA) release impairments observed previously in Huntington's disease model R6/2 mice were evaluated. Voltammetrically measured DA release evoked in striatal brain slices from 12-week old R6/2 mice by a single electrical stimulus pulse was only 19% of wild-type (WT) control mice. Iontophoresis experiments suggest that the concentration of released DA is not diluted by a larger striatal extracellular volume arising from brain atrophy, but, rather, that striatal dopaminergic terminals have a decreased capacity for DA release. This decreased capacity was not due to an altered requirement for extracellular Ca2+, and, as in WT mice, the release in R6/2 mice required functioning vesicular transporters. Catecholamine secretion from individual vesicles was measured during exocytosis from adrenal chromaffin cells harvested from R6/2 and WT mice. While the number of exocytotic events was unchanged, the amounts released per vesicle were significantly diminished in R6/2 mice, indicating that vesicular catecholamines are present in decreased amounts. Treatment of chromaffin cells with 3-nitropropionic acid decreased the vesicular release amount from WT cells by 50%, mimicking the release observed from untreated R6/2 cells. Thus, catecholamine release from tissues isolated from R6/2 mice is diminished because of impaired vesicle loading. [source]


Neurotransmitter transporters and their impact on the development of psychopharmacology

BRITISH JOURNAL OF PHARMACOLOGY, Issue S1 2006
Leslie Iversen
The synaptic actions of most neurotransmitters are inactivated by reuptake into the nerve terminals from which they are released, or by uptake into adjacent cells. A family of more than 20 transporter proteins is involved. In addition to the plasma membrane transporters, vesicular transporters in the membranes of neurotransmitter storage vesicles are responsible for maintaining vesicle stores and facilitating exocytotic neurotransmitter release. The cell membrane monoamine transporters are important targets for CNS drugs. The transporters for noradrenaline and serotonin are key targets for antidepressant drugs. Both noradrenaline-selective and serotonin-selective reuptake inhibitors are effective against major depression and a range of other psychiatric illnesses. As the newer drugs are safer in overdose than the first-generation tricyclic antidepressants, their use has greatly expanded. The dopamine transporter (DAT) is a key target for amphetamine and methylphenidate, used in the treatment of attention deficit hyperactivity disorder. Psychostimulant drugs of abuse (amphetamines and cocaine) also target DAT. The amino-acid neurotransmitters are inactivated by other families of neurotransmitter transporters, mainly located on astrocytes and other non-neural cells. Although there are many different transporters involved (four for GABA; two for glycine/D -serine; five for L -glutamate), pharmacology is less well developed in this area. So far, only one new amino-acid transporter-related drug has become available: the GABA uptake inhibitor tiagabine as a novel antiepileptic agent. British Journal of Pharmacology (2006) 147, S82,S88. doi:10.1038/sj.bjp.0706428 [source]