Home About us Contact | |||
Vesicular Trafficking (vesicular + trafficking)
Selected AbstractsAbnormal Vesicular Trafficking in Mouse Models of Hermansky,Pudlak SyndromePIGMENT CELL & MELANOMA RESEARCH, Issue 2000RICHARD T. SWANK Hermansky,Pudlak Syndrome (HPS) is a group of related multigenic recessively inherited disorders which causes abnormalities in the biosynthesis and/or function of three related organelles; melanosomes, platelet-dense granules and lysosomes. These lead, in turn, to hypopigmentation, prolonged bleeding and ceroid deposition. Positional cloning strategies have identified five mouse HPS genes. Two orthologous human diseases (HPS1 and HPS2) have likewise been identified. At least four of the five mouse genes encode proteins involved in the regulation of intracellular vesicle trafficking. The pearl (HPS2) and mocha genes encode the beta3A and delta subunits, respectively, of the AP-3 adaptor complex, which captures organelle membrane proteins at the trans-Golgi apparatus. The protein products of the pallid and gunmetal genes are also important components of the vesicular trafficking machinery. The former interacts with a t-SNARE, syntaxin13, and the latter is the alpha subunit of Rab geranylgeranyltransferase, which renders Rab proteins sufficiently lipophilic to function at their target membranes. The pale ear (HPS1) gene encodes a ubiquitously expressed protein of unknown function. Recent physiological studies have shown that mouse HPS mutants, like their human HPS counterparts, have variably reduced lifespans and may have lung abnormalities. [source] Rab4 facilitates cyclic adenosine monophosphate,stimulated bile acid uptake and Na+ -taurocholate cotransporting polypeptide translocation,HEPATOLOGY, Issue 5 2008Christopher M. Schonhoff Cyclic adenosine monophosphate (cAMP) stimulates hepatic bile acid uptake by translocating sodium-taurocholate (TC) cotransporting polypeptide (Ntcp) from an endosomal compartment to the plasma membrane. Rab4 is associated with early endosomes and involved in vesicular trafficking. This study was designed to determine the role of Rab4 in cAMP-induced TC uptake and Ntcp translocation. HuH-Ntcp cells transiently transfected with empty vector, guanosine triphosphate (GTP) locked dominant active Rab4 (Rab4(GTP)), or guanosine diphosphate (GDP) locked dominant inactive Rab4 (Rab4(GDP)) were used to study the role of Rab4. Neither Rab4(GTP) nor Rab4(GDP) affected either basal TC uptake or plasma membrane Ntcp level. However, cAMP-induced increases in TC uptake and Ntcp translocation were enhanced by Rab4(GTP) and inhibited by Rab4(GDP). In addition, cAMP increased GTP binding to endogenous Rab4 in a time-dependent, but phosphoinositide-3-kinase,independent manner. Conclusion: Taken together, these results suggest that cAMP-mediated phosphoinositide-3-kinase,independent activation of Rab4 facilitates Ntcp translocation in HuH-Ntcp cells. (HEPATOLOGY 2008.) [source] Role of annexin A6 isoforms in catecholamine secretion by PC12 cells: Distinct influence on calcium responseJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2010Paulina Podszywalow-Bartnicka Abstract Noradrenaline and adrenaline are secreted by adrenal medulla chromaffin cells via exocytosis. Exocytosis of catecholamines occurs after cell stimulation with various endogenous activators such as nicotine or after depolarization of the plasma membrane and is regulated by calcium ions. Cytosolic [Ca2+] increases in response to cell excitation and triggers a signal-initiated secretion. Annexins are known to participate in the regulation of membrane dynamics and are also considered to be involved in vesicular trafficking. Some experimental evidence suggests that annexins may participate in Ca2+ -regulated catecholamine secretion. In this report the effect of annexin A6 (AnxA6) isoforms 1 and 2 on catecholamine secretion has been described. Overexpression of AnxA6 isoforms and AnxA6 knock-down in PC12 cells were accompanied by almost complete inhibition or a 20% enhancement of dopamine secretion, respectively. AnxA6-1 and AnxA6-2 overexpression reduced ,[Ca2+]c upon depolarization by 32% and 58%, respectively, while AnxA6 knock-down increased ,[Ca2+]c by 44%. The mechanism of AnxA6 action on Ca2+ signalling is not well understood. Experimental evidence suggests that two AnxA6 isoforms interact with different targets engaged in regulation of calcium homeostasis in PC12 cells. J. Cell. Biochem. 111: 168,178, 2010. © 2010 Wiley-Liss, Inc. [source] Functions and pathophysiological roles of phospholipase D in the brainJOURNAL OF NEUROCHEMISTRY, Issue 6 2005Jochen Klein Abstract Ten years after the isoforms of mammalian phospholipase D (PLD), PLD1 and 2, were cloned, their roles in the brain remain speculative but several lines of evidence now implicate these enzymes in basic cell functions such as vesicular trafficking as well as in brain development. Many mitogenic factors, including neurotransmitters and growth factors, activate PLD in neurons and astrocytes. Activation of PLD downstream of protein kinase C seems to be a required step for astroglial proliferation. The characteristic disruption of the PLD signaling pathway by ethanol probably contributes to the delay of brain growth in fetal alcohol syndrome. The post-natal increase of PLD activities concurs with synapto- and myelinogenesis in the brain and PLD is apparently involved in neurite formation. In the adult and aging brain, PLD activity has antiapoptotic properties suppressing ceramide formation. Increased PLD activities in acute and chronic neurodegeneration as well as in inflammatory processes are evidently due to astrogliosis and may be associated with protective responses of tissue repair and remodeling. ARF-regulated PLD participates in receptor endocytosis as well as in exocytosis of neurotransmitters where PLD seems to favor vesicle fusion by modifications of the shape and charge of lipid membranes. Finally, PLD activities contribute free choline for the synthesis of acetylcholine in the brain. Novel tools such as RNA interference should help to further elucidate the roles of PLD isoforms in brain physiology and pathology. [source] Intracellular membrane trafficking in bone resorbing osteoclastsMICROSCOPY RESEARCH AND TECHNIQUE, Issue 6 2003Mika Mulari Abstract There is ample evidence now that the two major events in bone resorption, namely dissolution of hydroxyapatite and degradation of the organic matrix, are performed by osteoclasts. The resorption cycle involves several specific cellular activities, where intracellular vesicular trafficking plays a crucial role. Although details of these processes started to open up only recently, it is clear that vesicular trafficking is needed in several specific steps of osteoclast functioning. Several plasma membrane domains are formed during the polarization of the resorbing cells. Multinucleated osteoclasts create a tight sealing to the extracellular matrix as a first indicator of their resorption activity. Initial steps of the sealing zone formation are ,v,3 -integrin mediated, but the final molecular interaction(s) between the plasma membrane and mineralized bone matrix is still unknown. A large number of acidic intracellular vesicles then fuse with the bone-facing plasma membrane to form a ruffled border membrane, which is the actual resorbing organelle. The formation of a ruffled border is regulated by a small GTP-binding protein, rab7, which indicates the late endosomal character of the ruffled border membrane. Details of specific membrane transport processes in the osteoclasts, e.g., the formation of the sealing zone and transcytosis of bone degradation products from the resorption lacuna to the functional secretory domain remain to be clarified. It is tempting to speculate that specific features of vesicular trafficking may offer several potential new targets for drug therapy of bone diseases. Microsc. Res. Tech. 61:496,503, 2003. © 2003 Wiley-Liss, Inc. [source] Kin1 is a plasma membrane-associated kinase that regulates the cell surface in fission yeastMOLECULAR MICROBIOLOGY, Issue 5 2010Angela Cadou Summary Cell morphogenesis is a complex process that depends on cytoskeleton and membrane organization, intracellular signalling and vesicular trafficking. The rod shape of the fission yeast Schizosaccharomyces pombe and the availability of powerful genetic tools make this species an excellent model to study cell morphology. Here we have investigated the function of the conserved Kin1 kinase. Kin1-GFP associates dynamically with the plasma membrane at sites of active cell surface remodelling and is present in the membrane fraction. Kin1, null cells show severe defects in cell wall structure and are unable to maintain a rod shape. To explore Kin1 primary function, we constructed an ATP analogue-sensitive allele kin1-as1. Kin1 inhibition primarily promotes delocalization of plasma membrane-associated markers of actively growing cell surface regions. Kin1 itself is depolarized and its mobility is strongly reduced. Subsequently, amorphous cell wall material accumulates at the cell surface, a phenotype that is dependent on vesicular trafficking, and the cell wall integrity mitogen-activated protein kinase pathway is activated. Deletion of cell wall integrity mitogen-activated protein kinase components reduces kin1, hypersensitivity to stresses such as those induced by Calcofluor white and SDS. We propose that Kin1 is required for a tight link between the plasma membrane and the cell wall. [source] Solution structure of GOPC PDZ domain and its interaction with the C-terminal motif of neuroliginPROTEIN SCIENCE, Issue 9 2006Xiang Li Abstract GOPC (Golgi-associated PDZ and coiled-coil motif-containing protein) represents a PDZ domain-containing protein associated with the Golgi apparatus, which plays important roles in vesicular trafficking in secretory and endocytic pathways. GOPC interacts with many other proteins, such as the Wnt receptors Frizzled 8 and neuroligin via its PDZ domain. Neuroligin is a neural cell-adhesion molecule of the post-synapse, which binds to the presynapse molecule neurexin to form a heterotypic intercellular junction. Here we report the solution structure of the GOPC PDZ domain by NMR. Our results show that it is a canonical class I PDZ domain, which contains two ,-helices and six ,-strands. Using chemical shift perturbation experiments, we further studied the binding properties of the GOPC PDZ domain with the C-terminal motif of neuroligin. The observations showed that the ensemble of the interaction belongs to fast exchange with low affinity. The 3D model of the GOPC PDZ domain/neuroligin C-terminal peptide complex was constructed with the aid of the molecular dynamics simulation method. Our discoveries provide insight into the specific interaction of the GOPC PDZ domain with the C-terminal peptide of Nlg and also provide a general insight about the possible binding mode of the interaction of Nlg with other PDZ domain-containing proteins. [source] Brain Neurons Express Ornithine Decarboxylase-Activating Antizyme Inhibitor 2 with Accumulation in Alzheimer's DiseaseBRAIN PATHOLOGY, Issue 3 2010Laura T. Mäkitie Abstract Polyamines are small cationic molecules that in adult brain are connected to neuronal signaling by regulating inward-rectifier K+ -channels and different glutamate receptors. Antizyme inhibitors (AZINs) regulate the cellular uptake of polyamines and activate ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine synthesis. Elevated levels of ODC activity and polyamines are detected in various brain disorders including stroke and Alzheimer's disease (AD). We originally reported a novel brain- and testis-specific AZIN, called AZIN2, the distribution of which we have now studied in normal and diseased human brain by in situ hybridization and immunohistochemistry. We found the highest accumulation of AZIN2 in a pearl-on-the-string-like distribution along the axons in both the white and gray matter. AZIN2 was also detected in a vesicle-like distribution in the somas of selected cortical pyramidal neurons. Double-immunofluorescence staining revealed co-localization of AZIN2 and N-methyl D-aspartate-type glutamate receptors (NMDARs) in pyramidal neurons of the cortex. Moreover, we found accumulation of AZIN2 in brains affected by AD, but not by other neurodegenerative disorders (CADASIL or Lewy body disease). ODC activity is mostly linked to cell proliferation, whereas its regulation by AZIN2 in post-mitotically differentiated neurons of the brain apparently serves different purposes. The subcellular distribution of AZIN2 suggests a role in vesicular trafficking. [source] The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectorsCELLULAR MICROBIOLOGY, Issue 10 2009Irina S. Franco Summary Only a limited number of bacterial pathogens evade destruction by phagocytic cells such as macrophages. Legionella pneumophila is a Gram-negative ,-proteobacterial species that can infect and replicate in alveolar macrophages, causing Legionnaires' disease, a severe pneumonia. L. pneumophila uses a complex secretion system to inject host cells with effector proteins capable of disrupting or altering the host cell processes. The L. pneumophila effectors target multiple processes but are essentially aimed at modifying the properties of the L. pneumophila phagosome by altering vesicular trafficking, gradually creating a specialized vacuole in which the bacteria replicate robustly. In nature, L. pneumophila is thought to parasitize free-living protists, which may have selected for traits that promote virulence of L. pneumophila in humans. Indeed, many effector genes encode proteins with eukaryotic domains and are likely to be of protozoan origin. Sustained horizontal gene transfer events within the protozoan niche may have allowed L. pneumophila to become a professional parasite of phagocytes, simultaneously giving rise to its ability to infect macrophages, cells that constitute the first line of cellular defence against bacterial infections. [source] Internalization of Bordetella pertussis adenylate cyclase,haemolysin into endocytic vesicles contributes to macrophage cytotoxicityCELLULAR MICROBIOLOGY, Issue 11 2001Nadia Khelef Bordetella pertussis adenylate cyclase,haemolysin is a critical virulence factor in the murine model of intranasal infection, where it is required for several pathological effects, including macrophage apoptosis. Based on biochemical and immunological properties, it was proposed that the toxin was delivered directly to the cytoplasm of eukaryotic cells without trafficking through the endocytic pathway. In the present study, we analysed the cellular distribution of the adenylate cyclase,haemolysin during intoxication of macrophages. We showed that, shortly after its initial binding to the plasma membrane of macrophages, the toxin gains access to intracellular compartments that become progressively positive for the endosomal marker transferrin, but not for the lysosomal membrane protein CD107a/Lamp1. Importantly, the vesicular trafficking of the adenylate cyclase,haemolysin appears to be required for its ability to induce macrophage death. Inhibitors of actin polymerization and of macropinocytosis, as well as depletion of plasma membrane cholesterol and disruption of the Golgi network, reduce the toxin's ability to kill macrophages. Altogether, these results suggest that internalization of the adenylate cyclase,haemolysin into endocytic vesicles, at least partly through macropinocytosis, contributes to cytotoxicity. [source] Structural Diversity of PDZ,Lipid InteractionsCHEMBIOCHEM, Issue 4 2010Rodrigo Gallardo Abstract PDZ domains are globular protein modules that are over-and-above appreciated for their interaction with short peptide motifs found in the cytosolic tail of membrane receptors, channels, and adhesion molecules. These domains predominate in scaffold molecules that control the assembly and the location of large signaling complexes. Studies have now emerged showing that PDZ domains can also interact with membrane lipids, and in particular with phosphoinositides. Phosphoinositides control various aspects of cell signaling, vesicular trafficking, and cytoskeleton remodeling. When investigated, lipid binding appears to be extremely relevant for PDZ protein functionality. Studies point to more than one mechanism for PDZ domains to associate with lipids. Few studies have been focused on the structural basis of PDZ,phosphoinositide interactions, and the biological consequences of such interactions. Using the current knowledge on syntenin-1, syntenin-2, PTP-Bas, PAR-3 and PICK1, we recapitulate our understanding of the structural and biochemical aspects of PDZ,lipid interactions and the consequences for peptide interactions. [source] |