Home About us Contact | |||
Vesicle Exocytosis (vesicle + exocytosi)
Selected AbstractsAdenosine drives recycled vesicles to a slow-release pool at the mouse neuromuscular junctionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2010Paula P. Perissinotti Abstract The effects of adenosine on neurotransmission have been widely studied by monitoring transmitter release. However, the effects of adenosine on vesicle recycling are still unknown. We used fluorescence microscopy of FM2-10-labeled synaptic vesicles in combination with intracellular recordings to examine whether adenosine regulates vesicle recycling during high-frequency stimulation at mouse neuromuscular junctions. The A1 adenosine receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine) increased the quantal content released during the first endplate potential, suggesting that vesicle exocytosis can be restricted by endogenous adenosine, which accordingly decreases the size of the recycling vesicle pool. Staining protocols designed to label specific vesicle pools that differ in their kinetics of release showed that all vesicles retrieved in the presence of 8-cyclopentyl-1,3-dipropylxanthine were recycled towards the fast-release pool, favoring its loading with FM2-10 and suggesting that endogenous adenosine promotes vesicle recycling towards the slow-release pool. In accordance with this effect, exogenous applied adenosine prevented the replenishment of the fast-release vesicle pool and, thus, hindered its loading with the dye. We had found that, during high-frequency stimulation, Ca2+ influx through L-type channels directs newly formed vesicles to a fast-release pool (Perissinotti et al., 2008). We demonstrated that adenosine did not prevent the effect of the L-type blocker on transmitter release. Therefore, activation of the A1 receptor promotes vesicle recycling towards the slow-release pool without a direct effect on the L-type channel. Further studies are necessary to elucidate the molecular mechanisms involved in the regulation of vesicle recycling by adenosine. [source] Identification of two cDNAs encoding synaptic vesicle protein 2 (SV2)-like proteins from epithelial tissues in the cat flea, Ctenocephalides felisINSECT MOLECULAR BIOLOGY, Issue 3 2004S. J. Walmsley Abstract Two distinct cDNAs that appear to encode proteins in the synaptic vesicle-2 (SV2) family were identified as expressed sequence tags from a Ctenocephalides felis hindgut and Malpighian tubule (HMT) cDNA library. To date, SV2 proteins have been described only in vertebrates, and have been detected only in synaptic vesicles in neuronal and endocrine tissues, where they are thought to regulate synaptic vesicle exocytosis. The cDNAs for the C. felis SV2-like proteins SVLP-1 and SVLP-2 encode predicted full-length proteins of 530 and 726 amino acids, respectively. Of characterized proteins, the SVLP protein sequences were most similar to rat SV2B. Northern blot analysis revealed that both mRNAs were up-regulated in larval stages that feed and in adults after feeding, and were expressed primarily or exclusively in the HMT tissues in adult fleas. These results suggest that the flea SVLP-1 and SVLP-2 gene products may have roles that are specific for the HMT tissues, and may differ in function from vertebrate SV2 proteins. [source] The polybasic sequence in the C2B domain of rabphilin is required for the vesicle docking step in PC12 cellsJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Takashi Tsuboi Abstract Rabphilin is generally thought to be involved in the regulation of secretory vesicle exocytosis in neurons and neuroendocrine cells, and it has recently been hypothesized that the C2B domain of rabphilin promotes the docking of dense-core vesicles to the plasma membrane through simultaneous interaction with a vesicle protein, Rab3A/27A, and a plasma membrane protein, SNAP-25 (synaptosome-associated protein of 25 kDa). However, the physiological significance of the rabphilin,SNAP-25 interaction in the vesicle-docking step has never been elucidated. In this study we demonstrated by a mutation analysis that the polybasic sequence (587 KKAKHKTQIKKK 598) in the C2B domain of rabphilin is required for SNAP-25 binding, and that the Asp residues in the Ca2+ -binding loop 3 (D628 and D630) of the C2B domain are not required. We also investigated the effect of Lys,Gln (KQ) mutations in the polybasic sequence of the C2B domain on vesicle dynamics by total internal reflection fluorescence microscopy in individual PC12 cells. A rabphilin(KQ) mutant that completely lacks SNAP-25-binding activity significantly decreased the number of plasma-membrane-docked vesicles and strongly inhibited high-KCl-induced dense-core vesicle exocytosis. These results indicate that the polybasic sequence in the C2B domain functions as an effector domain for SNAP-25 and controls the number of ,releasable' vesicles docked to the plasma membrane. [source] Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxinJOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2006Carmen Vale Abstract A channel open on the membrane can be formed by palytoxin (PTX). Ten nanomolar PTX caused an irreversible increase in the cytosolic calcium concentration ([Ca2+]c), which was abolished in the absence of external calcium. The increase was eliminated by saxitoxin (STX) and nifedipine (NIF). Calcium rise is secondary to the membrane depolarization. PTX effect on calcium was dependent on extracellular Na+. Li+ decreased the PTX-evoked rise in [Ca2+]c; replacement of Na+ by N-methyl-D-glucamine (NMDG) abolished PTX-induced calcium increase. [Ca2+]c increase by PTX was strongly reduced after inhibition of the reverse operation of the Na+/Ca2+ exchanger, in the presence of antagonists of excitatory amino acid (EAA) receptors, and by inhibition of neurotransmitter release. PTX did not modify calcium extrusion by the plasma membrane Ca2+ -ATPase (PMCA), because blockade of the calcium pump increased rather than decreased the PTX-induced calcium influx. Extracellular levels of glutamate and aspartate were measured by HPLC and exocytotic neurotransmitter release by determination of synaptic vesicle exocytosis using total internal reflection fluorescence microscopy (TIRFM). PTX caused a concentration-dependent increase in EAA release to the culture medium. Ten nanomolar PTX decreased cell viability by 30% within 5 min. PTX-induced calcium influx involves three pathways: Na+ -dependent activation of voltage-dependent sodium channels (VDSC) and voltage-dependent calcium channels (VDCC), reverse operation of the Na+/Ca2+ exchanger, and indirect activation of EAA receptors through glutamate release. The neuronal injury produced by the toxin could be partially mediated by the PTX-induced overactivation of EAA receptors, VDSC, VDCC and the glutamate efflux into the extracellular space. © 2006 Wiley-Liss, Inc. [source] MicroRNA and proteome expression profiling in early-symptomatic ,-synuclein(A30P)-transgenic micePROTEOMICS - CLINICAL APPLICATIONS, Issue 5 2008Frank Gillardon Dr. Abstract The ,-synuclein has been implicated in the pathophysiology of Parkinson's disease (PD), because mutations in the alpha-synuclein gene cause autosomal-dominant hereditary PD and fibrillary aggregates of alpha-synuclein are the major component of Lewy bodies. Since presynaptic accumulation of ,-synuclein aggregates may trigger synaptic dysfunction and degeneration, we have analyzed alterations in synaptosomal proteins in early symptomatic ,-synuclein(A30P)-transgenic mice by two-dimensional differential gel electrophoresis. Moreover, we carried out microRNA expression profiling using microfluidic chips, as microRNA have recently been shown to regulate synaptic plasticity in rodents and to modulate polyglutamine-induced protein aggregation and neurodegeneration in flies. Differentially expressed proteins in ,-synuclein(A30P)-transgenic mice point to alterations in mitochondrial function, actin dynamics, iron transport, and vesicle exocytosis, thus partially resembling findings in PD patients. Oxygen consumption of isolated brain mitochondria, however, was not reduced in mutant mice. Levels of several microRNA (miR-10a, -10b, -212, -132, -495) were significantly altered. One of them (miR-132) has been reported to be highly inducible by growth factors and to be a key regulator of neurite outgrowth. Moreover, miR-132-recognition sequences were detected in the mRNA transcripts of two differentially expressed proteins. MicroRNA may thus represent novel biomarkers for neuronal malfunction and potential therapeutic targets for human neurodegenerative diseases. [source] Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis?BIOESSAYS, Issue 4 2004Flavia Valtorta Synaptophysin (Syp) was the first synaptic vesicle (SV) protein to be cloned. Since its discovery in 1985, it has been used by us and by many laboratories around the world as an invaluable marker to study the distribution of synapses in the brain and to uncover the basic features of the life cycle of SVs. Although single gene ablation of Syp does not lead to an overt phenotype, a large body of experimental data both in vitro and in vivo indicate that Syp (alone or in association with homologous proteins) is involved in multiple, important aspects of SV exo-endocytosis, including regulation of SNARE assembly into the fusion core complex, formation of the fusion pore initiating neurotransmitter release, activation of SV endocytosis and SV biogenesis. In this article, we summarise the main results of the studies on Syp carried out by our and other laboratories, and explain why we believe that Syp plays a major role in SV trafficking. BioEssays 26:445,453, 2004. © 2004 Wiley Periodicals, Inc. [source] |