Home About us Contact | |||
Veliger Larvae (veliger + larva)
Selected AbstractsMyogenesis in Aplysia californica (Cooper, 1863) (Mollusca, Gastropoda, Opisthobranchia) with special focus on muscular remodeling during metamorphosisJOURNAL OF MORPHOLOGY, Issue 7 2008Tim Wollesen Abstract To date only few comparative approaches tried to reconstruct the ontogeny of the musculature in invertebrates. This may be due to the difficulties involved in reconstructing three dimensionally arranged muscle systems by means of classical histological techniques combined with light or transmission electron microscopy. Within the scope of the present study we investigated the myogenesis of premetamorphic, metamorphic, and juvenile developmental stages of the anaspidean opisthobranch Aplysia californica using fluorescence F-actin-labeling in conjunction with modern confocal laser scanning microscopy. We categorized muscles with respect to their differentiation and degeneration and found three true larval muscles that differentiate during the embryonic and veliger phase and degenerate during or slightly after metamorphosis. These are the larval retractor, the accessory larval retractor, and the metapodial retractor muscle. While the pedal retractor muscle, some transversal mantle fibers and major portions of the cephalopedal musculature are continued and elaborated during juvenile and adult life, the buccal musculature and the anterior retractor muscle constitute juvenile/adult muscles which differentiate during or after metamorphosis. The metapodial retractor muscle has never been reported for any other gastropod taxon. Our findings indicate that the late veliger larva of A. californica shares some common traits with veligers of other gastropods, such as a larval retractor muscle. However, the postmetamorphic stages exhibit only few congruencies with other gastropod taxa investigated to date, which is probably due to common larval but different adult life styles within gastropods. Accordingly, this study provides further evidence for morphological plasticity in gastropod myogenesis and stresses the importance of ontogenetic approaches to understand adult conditions and life history patterns. J. Morphol., 2008. © 2007 Wiley-Liss, Inc. [source] Evolution and development of gastropod larval shell morphology: experimental evidence for mechanical defense and repairEVOLUTION AND DEVELOPMENT, Issue 1 2001Carole S. Hickman SUMMARY The structural diversity of gastropod veliger larvae offers an instructive counterpoint to the view of larval forms as conservative archetypes. Larval structure, function, and development are fine-tuned for survival in the plankton. Accordingly, the study of larval adaptation provides an important perspective for evolutionary-developmental biology as an integrated science. Patterns of breakage and repair in the field, as well as patterns of breakage in arranged encounters with zooplankton under laboratory conditions, are two powerful sources of data on the adaptive significance of morphological and microsculptural features of the gastropod larval shell. Shells of the planktonic veliger larvae of the caenogastropod Nassarius paupertus[Gould] preserve multiple repaired breaks, attributed to unsuccessful zooplankton predators. In culture, larvae isolated from concentrated zooplankton samples rapidly repaired broken apertural margins and restored the "ideal" apertural form, in which an elaborate projection or "beak" covers the head of the swimming veliger. When individuals with repaired apertures were reintroduced to a concentrated mixture of potential zooplankton predators, the repaired margins were rapidly chipped and broken back. The projecting beak of the larval shell is the first line of mechanical defense, covering the larval head and mouth and potentially the most vulnerable part of the shell to breakage. Patterns of mechanical failure show that spiral ridges do reinforce the beak and retard breakage. The capacity for rapid shell repair and regeneration, and the evolution of features that resist or retard mechanical damage, may play a more prominent role than previously thought in enhancing the ability of larvae to survive in the plankton. [source] Laboratory spawning, larval development, and metamorphosis of the limpets Lottia digitalis and Lottia asmi (Patellogastropoda, Lottiidae)INVERTEBRATE BIOLOGY, Issue 1 2002Matthew C. Kay Abstract. This study describes and compares laboratory spawning, larval development, and metamorphosis in the patellogastropod limpets Lottia digitalis and Lottia asmi. Both species were dioecious and freely spawned their gametes, which were fertilized externally. Eggs from L. digitalis and L. asmi averaged 155 and 134 ,m in diameter, respectively. Early cleavage patterns were typical of other patellogastropods. Swimming trochophore larvae had developed , 15 hours after fertilization, and ultimately developed into lecithotrophic veliger larvae that reached metamorphic competence at 5.25,5.5 days after fertilization (13°C). Food particles were frequently visible in the gut of newly metamorphosed individuals one day after settlement, and adult shell growth was typically initiated within 2,4 days of settlement. Small egg size in L. asmi, relative to other eastern Pacific lottiids, may be directly related to the need for high fecundity in this small-bodied species; however, developmental information is available for relatively few lottiid species. Because broadcasting lottiids do not secure egg masses in safe microhabitats for development, this reproductive mode may have been conducive to their ecological radiation into novel habitats. [source] Life history of Littorina scutulata and L. plena, sibling gastropod species with planktotrophic larvaeINVERTEBRATE BIOLOGY, Issue 1 2002Paul A. Hohenlohe Abstract. The intertidal, sibling species Littorina scutulata and L. plena (Gastropoda, Proso-branchia) are sympatric throughout most of their ranges along the Pacific coast of North America. Both species release disc-shaped, planktonic egg capsules from which planktotrophic veliger larvae hatch. Here I review existing data and present new observations on these species' life history, including age at first reproduction, spawning season, maximum fecundity rates, capsule morphology, egg size and number, pre-hatching development, larval growth at three food concentrations, potential settlement cues, planktonic period, and protoconch size. Previous classification of egg capsule morphologies used to distinguish the species is inaccurate; instead, capsules can be categorized into three types of which each species may produce two. Females of L. scutulata produced capsules with either two rims of unequal diameter or one rim, while females of L. plena produced capsules with one rim or two rims of nearly equal diameter. Females of each species spawned sporadically from early spring to early fall in Puget Sound. Larvae of L. plena hatched one day earlier than those of L. scutulata, and both species grew fastest in the laboratory at intermediate food concentrations. Larvae metamorphosed in the presence of a variety of materials collected from their adult habitat, including conspecific adults, algae, rocks, and barnacle tests. This is the first report of planktotrophic larvae in this genus metamorphosing in the laboratory. The total planktonic period of 8 larvae of L. scutulata raised in the laboratory was 37,70 days, and a single larva of L. plena metamorphosed after 62 days. Protoconch diameter of shells collected from the field was 256,436 ,m and did not differ significantly between the species. Previous allozyme and mitochondrial DNA work has suggested high levels of genetic variability in both species and greater genetic population structure in L. plena, despite the long spawning season and long-lived larvae in both species. The interspecific life history differences described here appear insufficient to produce consistent differences in gene flow patterns. [source] |