Home About us Contact | |||
Vehicle Systems (vehicle + system)
Selected AbstractsApplications of Sinusoidal Neural Network and Momentum Genetic Algorithm to Two-wheel Vehicle Regulating ProblemIEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 1 2008Duong Chau Sam Non-member Abstract In an attempt to enhance the performance of neural network (NN), we propose a sinusoidal activation function for NN and apply a fast genetic algorithm (GA) with uses of momentum offspring (MOS) and constant-range mutation (CRM) for training the NN. The proposed methods are aimed at designing a neurocontroller (NC) for regulating a two-wheel vehicle system, known as nonholonomic system, in the viewpoint that it is necessary to improve the control process of the system even though several control methods, including applications of NN and GAs, have been developed. The learning performances of NCs are evaluated through the successful evolutionary rates of the control process based on the values of the squared errors. In order to compare the conventional methods with our proposed approaches and verify the effects of momentum GA on NC training, various numerical simulations will be carried out with different numbers of generations in GAs and different activation functions of NCs. Finally, the controllability of NC is investigated with certain sets of initial states. The simulations show that sinusoidal NC trained by momentum GA has a good performance regardless of the small values of population size and generations in GA. Copyright © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source] Microemulsions as colloidal vehicle systems for dermal drug delivery.JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2005Part V: Microemulsions without, with glycolipid as penetration enhancer Abstract The aim of this study was to investigate the dermal administration of a highly hydrophilic model drug, diphenhydramine (DPH), in colloidal systems with an aqueous colloidal phase in the presence of a glycolipid (GL) as a penetration modifier. Dermal penetration of DPH, GL, and isopropylpalmitate (IPP) from ME systems without GL and with GL as well as from a hydrogel used as standard formulation were estimated in vitro using human skin. The penetration of the drug, the oil (IPP), and the GL was measured with highly sensitive HPLC, HPLC-MS, and GC-MS assays, respectively. It could be shown that penetration modifier GL is penetrating very fast, and to a high extent into and through the human skin. In contrast, the penetration of IPP used as oily phase in the ME is limited. When incorporated in the ME systems GL and DPH was accumulated in the viable epidermis and in the dermis. Using ME containing a penetration modifier such as GL, a slight additional enhancing effect could be observed, particularly concerning the penetration of DPH into the acceptor fluid when a highly hydrophilic drug such as DPH was applied. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:821,827, 2005 [source] A Human,Automation Interface Model to Guide Automation Design of System FunctionsNAVAL ENGINEERS JOURNAL, Issue 1 2007JOSHUA S. KENNEDY A major component of the US Army's Future Combat Systems (FCS) will be a fleet of eight different manned ground vehicles (MGV). There are promises that "advanced automation" will accomplish many of the tasks formerly performed by soldiers in legacy vehicle systems. However, the current approach to automation design does not relieve the soldier operator of tasks; rather, it changes the role of the soldiers and the work they must do, often in ways unintended and unanticipated. This paper proposes a coherent, top-down, overarching approach to the design of a human,automation interaction model. First, a qualitative model is proposed to drive the functional architecture and human,automation interface scheme for the MGV fleet. Second, the proposed model is applied to a portion of the functional flow of the common crew station on the MGV fleet. Finally, the proposed model is demonstrated quantitatively via a computational task-network modeling program (Improved Performance Research and Integration Tool). The modeling approach offers insights into the impacts on human task-loading, workload, and human performance. Implications for human systems integration domains are discussed, including Manpower and Personnel, Human Factors Engineering, Training, System Safety, and Soldier Survivability. The proposed model gives engineers and scientists a top-down approach to explicitly define and design the interactions between proposed automation schemes and the human crew. Although this paper focuses on the Army's FCS MGV fleet, the model and analytical processes proposed, or similar approaches, are appropriate for many manned systems in multiple domains (aviation, space, maritime, ground transportation, manufacturing, etc.). [source] Use of affinity capillary electrophoresis for characterizing pharmaceutical colloidal vehicle systems thermodynamicallyBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 7-8 2001Neubert Reinhard Abstract This review offers a detailed discussion of the interaction between pharmaceutical compounds and vehicles using the affinity capillary electrophoresis and the microemulsion electrokinetic chromatography. Partition coefficients of drugs were calculated between a micelle and an aqueous phases from the measurement of the migration time, provided the critical micelle concentration and the phase ratio are known. Thermodynamic quantities such as enthalpy and entropy changes of micellar solubilization were calculated from the temperature dependence of the partition coefficients. Partial specific volumes were measured using dynamic light scattering. The logarithm of the partition coefficients and the capacity factor in the micellar system were correlated with the logarithm of the n-octanol/water partition coefficients. Copyright © 2001 John Wiley & Sons, Ltd. [source] |