Vegetation Strata (vegetation + stratum)

Distribution by Scientific Domains


Selected Abstracts


Assessing the habitat quality of oil mallees and other planted farmland vegetation with reference to natural woodland

ECOLOGICAL MANAGEMENT & RESTORATION, Issue 3 2009
F. Patrick Smith
Summary, Much of the tree and shrub planting that has been conducted on farms in Western Australia over the past three decades has not been done with the specific intention of creating habitat or conserving biodiversity, particularly commercially oriented monocultures like oil mallee plantings. However, such plantings may nonetheless provide some habitat resources for native plants and animals. This study assessed the habitat quality of farm plantings (most of which were not planted with the primary intention of biodiversity conservation) at 72 sites across a study region in the central wheatbelt of Western Australia. Widely accepted habitat metrics were used to compare the habitat resources provided by planted farmland vegetation with those provided by remnant woodland on the same farms. The impact of adjacency of plantings to woodland and, in the case of oil mallees, the planting configuration on predicted habitat quality is assessed. Condition Benchmarks for five local native vegetation communities are proposed. Farmland plantings achieved an average Vegetation Condition Score (VCS) of 46 out of a possible 100, while remnant woodland on the same farms scored an average 72. The average scores for farm plantings ranged from 38,59 depending on which of five natural vegetation communities was used as its benchmark, but farm plantings always scored significantly less than remnant woodland (P < 0.001). Mixed species plantings on average were rated more highly than oil mallees (e.g. scores of 42 and 36 respectively using the Wandoo benchmark) and adjacency to remnant woodland improved the score for mixed plantings, but not for oil mallees. Configuration of oil mallees as blocks or belts (i.e. as an alley farming system) had no impact on the VCS. Planted farmland vegetation fell short of remnant woodland in both floristic richness (51 planted native species in total compared with a total of more than 166 naturally occurring plant species in woodland) and structural diversity (with height, multiple vegetation strata, tree hollows and woody debris all absent in the relatively young 7,15-year-old farm plantings). Nonetheless farmland plantings do have measurable habitat values and recruitment and apparent recolonization of plantings with native plant species was observed. Habitat values might be expected to increase as the plantings age. The VCS approach, including the application of locally relevant Benchmarks is considered to be valuable for assessing potential habitat quality in farmland vegetation, particularly as a tool for engaging landholders and natural resource management practitioners. [source]


Recovery of anuran community diversity following habitat replacement

JOURNAL OF APPLIED ECOLOGY, Issue 1 2010
David Lesbarrères
Summary 1.,Recently habitat degradation, road construction and traffic have all increased with human populations, to the detriment of aquatic habitats and species. While numerous restoration programmes have been carried out, there is an urgent need to follow their success to better understand and compensate for the decline of amphibian populations. To this end, we followed the colonization success of an anuran community across multiple replacement ponds created to mitigate large-scale habitat disturbance. 2.,Following construction of a highway in western France, a restoration project was initiated in 1999 and the success of restoration efforts was monitored. The amphibian communities of eight ponds were surveyed before they were destroyed. Replacement ponds were created according to precise edaphic criteria, consistent with the old pond characteristics and taking into account the amphibian species present in each. The presence of amphibian species was recorded every year during the breeding period for 4 years following pond creation. 3.,Species richness initially declined following construction of the replacement ponds but generally returned to pre-construction levels. Species diversity followed the same pattern but took longer to reach the level of diversity recorded before construction. Pond surface area, depth and sun exposure were the most significant habitat characteristics explaining both amphibian species richness and diversity. Similarly, an increase in the number of vegetation strata was positively related to anuran species richness, indicating the need to maintain a heterogeneous landscape containing relatively large open wetland areas. 4.,Synthesis and applications. We highlight the species-specific dynamics of the colonization process, including an increase in the number of replacement ponds inhabited over time by some species and, in some cases, an increase in population size. Our work suggests that successful replacement ponds can be designed around simple habitat features, providing clear benefits for a range of amphibian species, which will have positive cascading effects on local biodiversity. However, consideration must also be given to the terrestrial buffer zone when management strategies are being planned. Finally, our study offers insight into the successful establishment of anuran communities over a relatively short time in restored or replacement aquatic environments. [source]


Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain

JOURNAL OF FISH BIOLOGY, Issue 3 2003
P. Petry
During the flood season of 1992,1993, 139 species of fishes were collected from a floodplain lake system in the central Amazon Basin. Fish species distribution was examined relative to abiotic variables in seven vegetation strata on Marchantaria Island, Solimões River. Both environmental variables and species distributions were influenced by a river channel to floodplain-interior gradient. Species diversity was significantly higher in vegetated areas than in unvegetated areas, with deeper water Paspalum repens stands harbouring the highest diversity. As a result, species richness and catches were positively related to habitat complexity, while catch was also negatively related to dissolved oxygen (DO) and water depth. Low DO and shallow waters appeared to act as a refuge from predation. Fish assemblages were related to water chemistry, but species richness was not. Canonical correspondence analysis provided evidence that floodplain fish assemblages formed by the 76 most common species were influenced by physical variables, macrophyte coverage and habitat complexity, which jointly accounted for 67% of the variance of fish species assemblages. Omnivores showed no pattern relative to the river channel to floodplain-interior gradient while detritivores were more likely to be found at interior floodplain sites and piscivores closer to the river. Piscivores could be further separated into three groups, one with seven species associated with free-floating macrophytes in deep water, a second with five species found in shallow waters with rooted grasses and a third with six open water orientated species. The results suggest that fish assemblages in the Amazon floodplain are not random associations of species. [source]


Phylogenetic Age is Positively Correlated with Sensitivity to Timber Harvest in Bornean Mammals

BIOTROPICA, Issue 1 2008
Erik Meijaard
ABSTRACT The reasons that forest vertebrates differ in their response to selective timber extraction in tropical forests remain poorly characterized. Understanding what determines response and sensitivity can indicate how forest management might yield greater conservation benefits, and help us identify which lesser-known species may be especially vulnerable. We assessed the response of 41 Bornean mammals to selective timber harvest and tested eight hypotheses regarding the correlation between those responses and a range of species characteristics. Multivariate analyses show that phylogenetic species age is a key variable determining sensitivity. Older species are less able to cope with the effects of selective timber harvest. Most of these species are endemic to insular southeast Asia, and do not occur on the Asian mainland. These species are more specialized, and appear less able to cope with habitat change. In contrast, species tolerant to logging evolved more recently. This group tends to be omnivorous or herbivorous, to use all vegetation strata, and to be regionally widespread. This finding allows the sensitivity to habitat disturbance of lesser-known species to be predicted, and therefore has important conservation implications. These new insights also help in the design of large-scale forest landscapes that combine sustainable forest management and species conservation requirements. We recognize that these functions can be compatible, but that some species still need completely protected areas for their survival. RINGKASAN Hingga saat ini belum banyak penelitian mengungkapkan bagaimana berbagai vertebrata hutan akan bereaksi ketika dilakukan pembalakan hutan secara selektif. Dengan mempelajari tingkat reaksi dan kepekaan vertebrata, maka dapat diketahui bagaimana pengelolaan hutan dapat memberikan manfaat konservasi yang lebih besar. Penelitian demikian dapat membantu kami mengidentifikasi spesies mana saja yang biologinya sedikit diketahui namun termasuk rentan kepunahan. Kami mengevaluasi tanggapan 41 spesies mamalia Kalimantan/Borneo terhadap pemanenan kayu secara selektif, dan selanjutnya menguji 8 hipotesa berkaitan dengan hubungan atau korelasi antara tanggapan yang terjadi dengan berbagai karakteristik dari masing-masing spesies yang diteliti. Berdasarkan analisis multivarian disimpulkan bahwa umur filogenetik dari masing-masing spesies merupakan penentu kelentingan masing-masing spesies tersebut terhadap dampak pemanenan selektif. Spesies yang berumur lebih tua cenderung kurang dapat mentolerir dampak pemanenan kayu. Kebanyakan spesies ini merupakan endemik kepulauan di Asia Tenggara. Spesies ini cenderung merupakan spesialis (memiliki niche yang lebih sempit), serta tampaknya tidak seberapa kuat menerima dampak perubahan habitat. Sebaliknya spesies yang lebih toleran terhadap pembalakan cenderung baru berevolusi belakangan ini. Kelompok ini cenderung bersifat omnivora atau herbivora, serta mampu menggunakan seluruh lapisan vegetasi yang ada, serta tersebar meluas. Berdasarkan penelitian ini, dimungkinkan dilakukan prakiraan terhadap kepekaan dan dengan demikian terdapat berbagai manfaat praktis dalam hal metodologi. Analisis ini juga dapat membantu perancangan lanskap hutan berskala besar, dengan menggabungkan pengelolaan hutan berkelanjutan serta kebutuhan konservasi spesies. Kami melihat bahwa kedua kebutuhan pengelolaan tersebut dapat dipadu-serasikan, namun untuk beberapa spesies akan mutlak dibutuhkan kawasan yang dilindungi penuh demi kelanjutan spesies-spesies tersebut. [source]