Home About us Contact | |||
Vegetation Establishment (vegetation + establishment)
Selected AbstractsNatural revegetation of coal fly ash in a highly saline disposal lagoon in Hong KongAPPLIED VEGETATION SCIENCE, Issue 3 2008L.M. Chu Abstract. Question: What is the relationship of the naturally colonizing vegetation and substrate characteristics in fly ash lagoons? Location: West lagoon, Deep Bay, a 13-ha coastal lagoon in Hong Kong in subtropical Southeast Asia. Methods: Vegetation establishment was examined in a coal fly ash lagoon two years after its abandonment to investigate the distribution of vegetation in relationship to the chemical properties of the fly ash in the lagoon. A greenhouse experiment assessed the limits imposed on plant growth in fly ash. Results: The fly ash was saline, slightly alkaline and very poor in organic matter and nitrogen. Ash from bare and vegetated areas differed significantly in their salinity and extractable concentrations of inorganic nitrogen and various metals. Bare ash had a significantly higher conductivity and extractable sodium, aluminum, manganese, potassium, and lead. In total 11 plant species that belonged to seven families were found growing on the fly ash; all species except the shrub Tamarix chinensis were herbaceous. Using discriminant analysis, the most important factors in distinguishing bare and vegetated ashes were conductivity and sodium. Cluster analysis of bare samples gave two distinct groups, one from the periphery of the lagoon, which had lower sodium, conductivity, organic carbon, potassium and copper, and the other from a second group that contained ashes from the central region of the lagoon. Results of the greenhouse experiment showed that the inhibition of plant growth was significantly correlated with the presence of soluble toxic elements in ash. Conclusion: Toxicity and salinity seem to be the major limiting factors to plant establishment in fly ash, and these factors must be ameliorated for the successful reclamation of these fly ash lagoons. [source] Impact of wastewater discharge on the channel morphology of ephemeral streamsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2001Marwan A. Hassan Abstract The impact of wastewater flow on the channel bed morphology was evaluated in four ephemeral streams in Israel and the Palestinian Territories: Nahal Og, Nahal Kidron, Nahal Qeult and Nahal Hebron. Channel changes before, during and after the halting of wastewater flow were monitored. The wastewater flow causes a shift from a dry ephemeral channel with intermittent floods to a continuous flow pattern similar to that of humid areas. Within a few months, nutrient-rich wastewater flow leads to rapid development of vegetation along channel and bars. The colonization of part of the active channel by vegetation increases flow resistance as well as bank and bed stability, and limits sediment availability from bars and other sediment stores along the channels. In some cases the established vegetation covers the entire channel width and halts the transport of bed material along the channel. During low and medium size flood events, bars remain stable and the vegetation intact. Extreme events destroy the vegetation and activate the bars. The wastewater flow results in the development of new small bars, which are usually destroyed by flood flows. Due to the vegetation establishment, the active channel width decreases by up to 700 per cent. The deposition of fine sediment and organic material changed the sediment texture within the stable bar surface and the whole bed surface texture in Nahal Hebron. The recovery of Nahal Og after the halting of the wastewater flow was relatively fast; within two flood seasons the channel almost returned to pre-wastewater characteristics. The results of the study could be used to indicate what would happen if wastewater flows were introduced along natural desert streams. Also, the results could be used to predict the consequences of vegetation removal as a result of human intervention within the active channel of humid streams. Copyright © 2001 John Wiley & Sons, Ltd. [source] IMPACT OF COAL SURFACE MINING AND RECLAMATION ON SUSPENDED SEDIMENT IN THREE OHIO WATERSHEDS,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2000James V. Bonta ABSTRACT: Prior to PL95,87 little research had been conducted to determine the impacts of mining and reclamation practices on sediment concentrations and yields on a watershed scale. Furthermore, it was unknown whether sediment yield and other variables would return to undisturbed levels after reclamation. Therefore, three small watersheds, with differing lithologies and soils, were monitored for runoff and suspended sediment concentrations during three phases of watershed disturbances: undisturbed watershed condition, mining and reclamation disturbances, and post-reclaimed condition. Profound increases in suspended-sediment concentrations, load rates, and yields due to mining and reclamation activities, and subsequent drastic decreases after reclamation were documented. Even with increases in runoff potential, reductions in suspended-sediment concentrations and load rates to below or near undisturbed-watershed levels is possible by using the mulch-crimping technique and by removing diversions. Maximum concentrations and load rates occurred during times of active disturbances that exposed loose soil and spoil to high-intensity rains. Sediment concentrations remained elevated compared with the undisturbed watershed when diversions were not well maintained and overtopped, and when they were not removed for final reclamation. Diversions are useful for vegetation establishment, but should be maintained until they are removed for final reclamation after good vegetative cover is established. [source] Increasing the Effectiveness of Reed canary grass (Phalaris arundinacea L.) Control in Wet Meadow RestorationsRESTORATION ECOLOGY, Issue 3 2006Carrie Reinhardt Adams Abstract Restoration practices are often based on trial and error or anecdotal information because data from controlled experiments are not available. In wet meadow restorations of the upper Midwest United States, Reed canary grass (Phalaris arundinacea L.) is controlled with spring burning and spring glyphosate herbicide applications, but the relative effectiveness of either treatment with respect to P. arundinacea growth and life history has not been assessed. We designed a multiyear field experiment to evaluate effects of burning and herbicide application timings on P. arundinacea populations. Burning did not reduce P. arundinacea biomass but reduced the P. arundinacea seed bank, potentially limiting recolonization of P. arundinacea. Glyphosate applications in late August and late September were more effective than in mid-May (due to enhanced glyphosate translocation to rhizomes), such that two mid-May applications reduced P. arundinacea biomass to a level equivalent to that achieved by one late-season application. Phalaris. arundinacea recolonized rapidly from the seed bank and, in plots that received suboptimally timed (mid-May) herbicide, from rhizomes. Establishment of native species was very low, likely due to competition with recolonizing P. arundinacea. Unplanted species (from the seed bank and refugial populations) accounted for the majority of non- P. arundinacea biomass. Recolonization of other species was strongly limited by a threshold level of P. arundinacea biomass. Adequate site preparation (over multiple growing seasons) and aftercare (selective removal of P. arundinacea) will be the key to facilitating subsequent wet meadow vegetation establishment. This research provides an example of the importance of experimental evidence as the basis to improve the efficiency of restoration practices. [source] |