Vegetation Change (vegetation + change)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


RELATION BETWEEN VEGETATION CHANGES, CLIMATE VARIABLES AND LAND-USE POLICY IN SHAANXI PROVINCE, CHINA

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 4 2007
MADELENE OSTWALD
ABSTRACT Shaanxi Province in China has been exposed to climate variability and dramatic land-use policies. The aim here is to examine vegetation changes in this area on a regional scale from 2000 to 2004 in relation to land-use changes and climate traits. The data in this assessment include remote sensing information from moderate-resolution imaging spectro-radiometer normalized difference vegetation index from 2000 to 2004, and climate data (precipitation and temperature) from 1956 to 2000. The results show an increase in vegetation production from 2000 to 2004, particularly in the north, which cannot be explained solely by climate impacts. Since the vegetation in the north is more dependent on climate variation than the other parts of Shaanxi due to more serious water limitation, the results suggest that the large-scale land-use policy implemented over the last decade, with a focus on northern Shaanxi, is possibly having an impact on the overall vegetation. [source]


Vegetation Change and Soil Nutrient Distribution along an Oasis-Desert Transitional Zone in Northwestern China

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 11 2007
Bao-Ming Chen
Abstract Many studies have focused on soil nutrient heterogeneity and islands of fertility in arid ecosystems. However, few have been conducted on an oasis-desert transitional zone where there is a vegetation pattern changing from shrubs to annual herbs. The goal of the present study was to understand vegetation and soil nutrient heterogenity along an oasis-desert transitional zone in northwestern China. Three replicated sampling belts were selected at 200 m intervals along the transitional zone. Twenty-one quadrats (10 × 10 m) at 50 m intervals were located along each sampling belt. The vegetation cover was estimated through the quadrats, where both the soil under the canopy and the open soil were sampled simultaneously. The dominated shrub was Haloxylon ammodendron in the areas close to the oasis and Nitraria tangutorum dominated the areas close to the desert. In general, along the transitional zone the vegetation cover decreased within 660 m, increased above 660 m and decreased again above 1 020 m (close to the desert). The soil nutrients (organic matter, total N, NO3, and NH4+) showed significant differences along the zone. The soil nutrients except the soil NH4+ under the canopy were higher than those in open soil, confirming "islands of fertility" or nutrient enrichment. Only a slight downward trend of the level of "islands of fertility" for soil organic matter appeared in the area within 900 m. Soil organic matter both under canopy and in interspace showed a positive correlation with the total vegetation cover, however, there was no significant correlation between the other soil nutrients and the total vegetation cover. We also analyzed the relationship between the shrubs and annuals and the soil nutrients along the zone. Similarly, there was no significant correlation between them, except soil organic matter with the annuals. The results implied that annual plants played an important role in soil nutrient enrichment in arid ecosystem. [source]


Intra- and Interannual Vegetation Change: Implications for Long-Term Research

RESTORATION ECOLOGY, Issue 1 2008
Julie E. Korb
Abstract To draw reliable conclusions from forest restoration experiments, it is important that long-term measurements be repeatable or year-to-year variability may interfere with the correct interpretation of treatment effects. We used permanent plots in a long-term restoration study in southwestern Colorado to measure herbaceous and shrub vegetation at three dates within a single year (June, July, and August), and between years (2003 and 2005), on untreated control plots in a warm, dry mixed conifer forest. Growing season precipitation patterns were similar between 2003 and 2005, so differences in vegetation should be related primarily to differences in the sampling month. Significant indicator species for each sampling month were present within a single year (2005), primarily reflecting early-season annuals. We found no significant differences for total species abundance (2005). Species richness, abundance, and indicator species were significantly different between years for different sampling months indicating that sampling should be conducted within a similar time frame to avoid detecting differences that are not due to treatment effects or variations in year-to-year climate. These findings have implications for long-term research studies where the objectives are to detect changes over time in response to treatments, climate variation, and natural processes. Long-term sampling should occur within a similar phenological time frame each year over a short amount of time and should be based on the following criteria: (1) the sampling period is congruent with research objectives such as detecting rare species or peak understory abundance and (2) the sampling period is feasible in regard to personnel and financial constraints. [source]


The irreversible cattle-driven transformation of a seasonally flooded Australian savanna

JOURNAL OF BIOGEOGRAPHY, Issue 5 2003
Ben R. Sharp
Abstract Aim ,Anecdotal historical and photographic evidence suggests that woody vegetation is increasing dramatically in some northern Australian savanna habitats. Vegetation change in savannas has important implications for pastoral land-use, conservation management, and landscape-scale carbon storage, and informs theoretical debates about ecosystem function. This study seeks to determine the nature, extent and cause(s) of woody vegetation change in a seasonally flooded alluvial savanna habitat. Location ,The study area is located within the seasonally inundated alluvial zone of the tidal portion of the Victoria River, Northern Territory, Australia. The study area has been grazed by domestic stock since c. 1900, prior to which the area was inhabited and more likely regularly burnt by Aboriginal people for thousands of years. Methods ,Digital georeferenced aerial photographic coverages were used to examine and quantify woody vegetation change between 1948 and 1993. Transect surveys of woody and herbaceous vegetation were carried out to ground-truth air-photo results and determine the nature and causes of observed vegetation changes. Results ,There has been a dramatic increase in woody vegetation cover throughout the study area. Vegetation change patterns are roughly uniform across the full range of edaphic habitat variation and are unrelated to the depositional age of fluvial sediments. Two woody species, Eucalyptus microtheca and Excoecaria parvifolia, are predominantly responsible for observed increases. Demographic analyses reveal that woody invasions have been episodic and indicate that in most locations peak woody species establishment occurred in the mid-1970s. Grasses are almost absent in a majority of habitats within the study area. Instead, large areas are covered by scalded soil, dense invasive weed populations, and unpalatable forbs and sedges. What grasses do occur are predominantly of very low value for grazing. The condition of the herbaceous layer renders most of the study area almost completely non-flammable; what fires do burn are small and of low intensity. Main conclusions ,Multiple working hypotheses explaining observed patterns of woody vegetation increase were considered and rejected in turn. The only hypothesis consistent with the evidence is as follows: (1) observed changes are a direct consequence of extreme overgrazing by cattle, most likely when stocking rates peaked in the mid-1970s; (2) prolonged heavy grazing effected the complete transformation of much of the herbaceous vegetation to a new state that is not flammable; and (3) in the absence of regular fire mortality, woody vegetation increased rapidly. The relatively treeless system that existed in 1948 was apparently stable and resilient to moderate grazing levels, and perhaps also to episodic heavy grazing events. However, grazing intensity in excess of a sustainable threshold has forced a transition that is irreversible in the foreseeable future. Stable-state transitions such as this one inform debates at the heart of ecological theory, such as the nature of stability, resilience, equilibrium and carrying capacity in dynamic savanna ecosystems. [source]


Influence of slope and aspect on long-term vegetation change in British chalk grasslands

JOURNAL OF ECOLOGY, Issue 2 2006
JONATHAN BENNIE
Summary 1,The species composition of fragmented semi-natural grasslands may change over time due to stochastic local extinction and colonization events, successional change and/or as a response to changing management or abiotic conditions. The resistance of vegetation to change may be mediated through the effects of topography (slope and aspect) on soils and microclimate. 2,To assess long-term vegetation change in British chalk grasslands, 92 plots first surveyed by F. H. Perring in 1952,53, and distributed across four climatic regions, were re-surveyed during 2001,03. Changes in vegetation since the original survey were assessed by comparing local colonization and extinction rates at the plot scale, and changes in species frequency at the subplot scale. Vegetation change was quantified using indirect ordination (Detrended Correspondence Analysis; DCA) and Ellenberg indicator values. 3,Across all four regions, there was a significant decrease in species number and a marked decline in stress-tolerant species typical of species-rich calcareous grasslands, both in terms of decreased plot occupancy and decreased frequency within occupied plots. More competitive species typical of mesotrophic grasslands had colonized plots they had not previously occupied, but had not increased significantly in frequency within occupied plots. 4,A significant increase in Ellenberg fertility values, which was highly correlated with the first DCA axis, was found across all regions. The magnitude of change of fertility and moisture values was found to decrease with angle of slope and with a topographic solar radiation index derived from slope and aspect. 5,The observed shift from calcareous grassland towards more mesotrophic grassland communities is consistent with the predicted effects of both habitat fragmentation and nutrient enrichment. It is hypothesized that chalk grassland swards on steeply sloping ground are more resistant to invasion by competitive grass species than those on flatter sites due to phosphorus limitation in shallow minerogenic rendzina soils, and that those with a southerly aspect are more resistant due to increased magnitude and frequency of drought events. [source]


Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of Veratrum album, an unpalatable, long-lived, clonal plant species

JOURNAL OF ECOLOGY, Issue 2 2002
David Kleijn
Summary 1 ,Vegetation change induced by large herbivores is driven by the effects of grazers on populations of individual plant species. Short-term experimental or demographic studies may be insufficient when investigating the population responses of long-lived clonal plant species. 2 ,We therefore examined the effects of grazing on such a plant (Veratrum album) by comparing the spatial and genetic structure of populations in grasslands subject to long-term grazing or mowing for hay. 3 , V. album is a locally dominant species that is avoided by large herbivores due to its toxicity. RAPD-phenotypes of a subsample of c. 50 shoots, and co-ordinates and dry weight of all shoots, were determined in a 5 × 10 m plot in each of four meadow and four pasture populations. 4 ,The breeding system of the genus Veratrum was previously unknown but our experimental finding that cross-pollinated but not self-pollinated or unpollinated flowers produced as many seeds as freely pollinated flowers suggested that V. album is a predominantly cross-pollinating species. 5 ,Both the spatial and genetic population structure differed markedly between the two grassland types. Clonal expansion of established plants in pastures led to populations consisting of larger shoots that were significantly more aggregated at a small spatial scale. Populations also had a higher proportion of flowering shoots, less seedling recruitment and a lower genotypic diversity in pastures than hay meadows. 6 ,The differences in population structure appear to be due to hay meadow populations reproducing primarily by seeds, whereas clonal reproduction accounts for half of the population growth in pastures. We suggest that, as livestock selectively avoids V. album shoots, grazing indirectly promotes plant growth, which results in an enhanced vegetative reproduction as well as a higher seed production. Experimental studies are, however, needed to determine why and how grazing adversely affects seedling recruitment. 7 ,Detailed information on population level responses of unpalatable dominant plant species, such as provided by the present study, may help us understand and predict vegetation change in response to changing levels of herbivory. [source]


Vegetation change from chronic stress events: Detection of the effects of tide gate removal and long-term drought on a tidal marsh

JOURNAL OF VEGETATION SCIENCE, Issue 3 2007
Paul R. Wetzel
Godfrey & Wooten (1979, 1981) Abstract Question: Chronic stress events are defined as disturbance events that exceed the lifespan of the dominant plant species, fluctuate in intensity and lack abruptness or physical destruction of biomass. Can the effects of chronic stress events be measured on vegetation communities? Did two chronic stress events, the removal of a tide gate and a four year drought, cause a temporary or permanent shift in the vegetation communities of a tidal marsh? Location: Tidal marsh in southeastern United States. Methods: Change in species composition and dominance and community change on a landscape level salinity gradient were measured between time periods ranging from four months to seven years to construct a statistical baseline reference community at freshwater, oligohaline, and mesohaline sections of a tidal marsh. Statistical shifts in the plant community were defined as changes in the plant community that fell outside of the defined baseline reference community. Results: Plant community changes outside of the reference community occurred in 13 out of 378 community comparisons. Removal of the tide gate had a greater effect on interstitial salinity levels than the drought and was most intense in the oligohaline marsh, where between 20 to 45% of the freshwa-ter/oligohaline community types permanently converted to oligohaline community types. However, community shifts in the freshwater and oligohaline marsh induced by the drought were temporary, lasting from 1 to 3+ years. Neither chronic stress event permanently altered the mesohaline plant communities. Conclusion: The effects of chronic stress events could be detected; an extended historical record of vegetation change (18 years) was necessary to identify community shifts outside of a reference condition of the community and to determine if those shifts were permanent or temporary. [source]


Vegetation change in a man-made salt marsh affected by a reduction in both grazing and drainage

APPLIED VEGETATION SCIENCE, Issue 1 2002
Peter Esselink
Abstract. In order to restore natural salt marsh in a 460-ha nature reserve established in man-made salt marsh in the Dollard estuary, The Netherlands, the artificial drainage system was neglected and cattle grazing reduced. Vegetation changes were traced through two vegetation surveys and monitoring of permanent plots over 15 yr after the management had been changed. Exclosure experiments were started to distinguish grazing effects from effects of increased soil waterlogging caused by the neglect of the drainage system. Both vegetation surveys and permanent plots demonstrated a dichotomy in vegetation succession. The incidence of secondary pioneer vegetation dominated by Salicornia spp. and Suaeda maritima increased from 0 to 20%, whereas the late-successional (Phragmites australis) vegetation from 10 to 15%. Grazing intensity decreased towards the sea. The grazed area contracted landward, which allowed vegetation dominated by tall species to increase seaward. Grazing and increased waterlogging interacted in several ways. The impact of trampling increased, and in the intensively grazed parts soil salinity increased. This can probably be explained by low vegetation cover in spring. Framework Ordination, an indirect-gradient-analysis technique, was used to infer the importance of environmental factors in influencing changes in species composition. Many changes were positively or negatively correlated with soil aeration and soil salinity, whereas elevation was of minor importance. Grazing accounted for only a few changes in species frequency. Changes in permanent plots were greater during the first than during the second half of the study period. In exclosures that were installed halfway through the study period, there was a relatively rapid recovery of previously dominant species that had decreased during the first half of the study period. Species richness per unit area in the reserve increased. At the seaward side of the marsh, the altered management allowed succession to proceed leading to establishment of stands of Phragmites australis, whereas on the landward side, the combination of moderate grazing with neglect of the drainage system appeared an effective measure in maintaining habitats for a wider range of halophytic species. [source]


Herbaceous vegetation change in variable rangeland environments: The relative contribution of grazing and climatic variability

APPLIED VEGETATION SCIENCE, Issue 2 2001
Samuel D. Fuhlendorf
Hatch et al. (1990) Abstract. A 44-yr record of herbaceous vegetation change was analysed for three contrasting grazing regimes within a semi-arid savanna to evaluate the relative contribution of confined livestock grazing and climatic variability as agents of vegetation change. Grazing intensity had a significant, directional effect on the relative composition of short- and mid-grass response groups; their composition was significantly correlated with time since the grazing regimes were established. Interannual precipitation was not significantly correlated with response group composition. However, interannual precipitation was significantly correlated with total plant basal area while time since imposition of grazing regimes was not, but both interannual precipitation and time since the grazing regimes were established were significantly correlated with total plant density. Vegetation change was reversible even though the herbaceous community had been maintained in an altered state for ca. 60 yr by intensive livestock grazing. However, ca. 25 yr were required for the mid-grass response group to recover following the elimination of grazing and recovery occurred intermittently. The increase in mid-grass composition was associated with a significant decrease in total plant density and an increase in mean individual plant basal area. Therefore, we failed to reject the hypotheses based on the proportional change in relative response group composition with grazing intensity and the distinct effects of grazing and climatic variability on response group composition, total basal area and plant density. Long-term vegetation change indicates that grazing intensity established the long-term directional change in response group composition, but that episodic climate events defined the short-term rate and trajectory of this change and determines the upper limit on total basal area. The occurrence of both directional and non-directional vegetation responses were largely a function of (1) the unique responses of the various community attributes monitored and (2) the distinct temporal responses of these community attributes to grazing and climatic variation. This interpretation supports previous conclusions that individual ecosystems may exist in equilibrial and non-equilibrial states at various temporal and spatial scales. [source]


Effects of long-term grazing management on sand dune vegetation of high conservation interest

APPLIED VEGETATION SCIENCE, Issue 1 2010
Katharina Plassmann
Abstract Question: Can long-term grazing management maintain and restore species-rich sand dune plant communities within a sand dune site of high conservation interest? Location: Newborough Warren, North Wales, UK. Methods: Vegetation changes that occurred between 1987 and 2003, subsequent to grazing by domestic livestock being introduced to the site after decades with little or no stock grazing, were analysed using data collected from permanent monitoring quadrats over a 16-year period. Results: At the plant community level, grazing brought about a shift from a tall-grass dominated, species-poor community to a more species-rich community in the dry dunes, but did not change community type in dune slacks. However, at the species level, grazing enhanced the abundance of some desired perennial, annual and biennial species, graminoids and bryophytes in both habitat types. The increased frequency of positive indicator species for habitat condition suggests that grazing was beneficial for species of conservation interest. Ellenberg nitrogen (N) values decreased after grazing in dry habitats but showed no long-term change independent of grazing, suggesting no increase in site fertility over the study period. Surprisingly, light (L) values also decreased in the dry dunes after grazing. Conclusions: Long-term grazing management can play an important role for the conservation of dune communities and associated species. Because of its positive effects on species diversity, plant communities and habitat condition in sand dunes, livestock grazing is recommended for conservation management. [source]


Vegetation change in a man-made salt marsh affected by a reduction in both grazing and drainage

APPLIED VEGETATION SCIENCE, Issue 1 2002
Peter Esselink
Abstract. In order to restore natural salt marsh in a 460-ha nature reserve established in man-made salt marsh in the Dollard estuary, The Netherlands, the artificial drainage system was neglected and cattle grazing reduced. Vegetation changes were traced through two vegetation surveys and monitoring of permanent plots over 15 yr after the management had been changed. Exclosure experiments were started to distinguish grazing effects from effects of increased soil waterlogging caused by the neglect of the drainage system. Both vegetation surveys and permanent plots demonstrated a dichotomy in vegetation succession. The incidence of secondary pioneer vegetation dominated by Salicornia spp. and Suaeda maritima increased from 0 to 20%, whereas the late-successional (Phragmites australis) vegetation from 10 to 15%. Grazing intensity decreased towards the sea. The grazed area contracted landward, which allowed vegetation dominated by tall species to increase seaward. Grazing and increased waterlogging interacted in several ways. The impact of trampling increased, and in the intensively grazed parts soil salinity increased. This can probably be explained by low vegetation cover in spring. Framework Ordination, an indirect-gradient-analysis technique, was used to infer the importance of environmental factors in influencing changes in species composition. Many changes were positively or negatively correlated with soil aeration and soil salinity, whereas elevation was of minor importance. Grazing accounted for only a few changes in species frequency. Changes in permanent plots were greater during the first than during the second half of the study period. In exclosures that were installed halfway through the study period, there was a relatively rapid recovery of previously dominant species that had decreased during the first half of the study period. Species richness per unit area in the reserve increased. At the seaward side of the marsh, the altered management allowed succession to proceed leading to establishment of stands of Phragmites australis, whereas on the landward side, the combination of moderate grazing with neglect of the drainage system appeared an effective measure in maintaining habitats for a wider range of halophytic species. [source]


Recolonisation of natural landslides in tropical mountain forests of Southern Ecuador

FEDDES REPERTORIUM, Issue 3-4 2004
(corresp. author) C. Ohl Dr.
The regeneration of the vegetation of natural landslides was studied at Estación Científica San Francisco (ECSF) in a tropical mountain forest area of Southern Ecuador, north of Podocarpus National Park. The study focused on the process of regeneration on natural landslides and the vegetation change along an altitudinal gradient using space-for-time substitution. The most important plant families present on the landslides during the first stages of succession are Gleicheniaceae (Pteridophyta), Melastomataceae, Ericaceae and Orchidaceae. Species of the genus Sticherus (Gleicheniaceae) are dominant, and species composition varies with altitude and soil conditions. Colonisation of landslides is not homogeneous. Zones with bare ground, sparsely vegetated patches and densely covered areas may be present within the same slide. This small scale spatial heterogeneity is often created by local ongoing sliding processes and different distances towards undisturbed areas. Therefore, the duration of the successional process is highly variable. The initial stage of the succession is a community of non vascular plants interspersed with scattered individuals of vascular plants. By means of runner-shoots they form vegetation patches which start growing into each other. The second stage is dominated by Gleicheniaceae (species composition varying in altitude and soil chemistry). In the third stage, bushes and trees colonise, sheltered by the ferns, and a secondary forest develops with pioneer species that are not found in the primary forest vegetation. The common phenomenon of the natural landslides leads to an increase in structural and species diversity on a regional scale. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) Rekolonisation auf natürlichen Hangrutschungen in tropischen Bergwäldern Südecuadors Im tropischen Bergwald Südecuadors (nördlich des Podocarpus Nationalparks im Gebiet der Estación Científica San Francisco, ECSF) wurden Artenzusammensetzung und Rekolonisationsprozesse früher Sukzessionsstadien entlang eines Höhengradienten auf natürlichen Hangrutschungen untersucht. Besonders Gleicheniaceae, Melastomataceae, Ericaceae und Orchidaceae sind von Bedeutung. Arten der Gattung Sticherus (Gleicheniaceae) sind sehr zahlreich vertreten. Die Artenzusammensetzung wechselt entlang des Höhengradienten und in Abhängigkeit von den Bodenbedingungen. Die mosaikartige Verteilung der Vegetation auf den Rutschungen (gänzlich unbedeckte bis stark überwucherte Zonen) ist auf häufige lokale Nachrutschungen sowie auf unterschiedliche Geschwindigkeiten der Wiederbesiedlung entsprechend der Distanz zu ungestörter Vegetation zurückzuführen. Die Dauer der Sukzession ist daher sehr variabel. Das Initialstadium wird von Moosen und Flechten gebildet. Im weiteren Verlauf führt die überwiegend vegetative Ausbreitung einzelner Gefäßpflanzen zum zweiten Sukzessionsstadium. Dieses ist durch die Dominanz von Gleicheniaceae gekennzeichnet, während im dritten Stadium im Schutze der Farne erste Büsche und Bäume heranwachsen und den Pionierwald bilden. Da diese Arten nicht im Primärwald vertreten sind, kommt es regional zu einer beträchtlichen Erhöhung der Artenzahl und der strukturellen Diversität. [source]


Wind erosion and intensive prehistoric agriculture: A case study from the Kalaupapa field system, Moloka'i Island, Hawai'i

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 5 2007
Mark D. McCoy
Wind erosion is a major problem for modern farmers, a key variable affecting nutrient levels in ecosystems, and a potentially major force impacting archaeological site formation; however, it has received scant consideration in geoarchaeological studies of agricultural development compared with more easily quantifiable environmental costs, such as vegetation change or fluvial erosion. In this study, soil nutrient analysis is used in the Kalaupapa field system, Moloka'i Island, Hawai'i, to detect an increase in wind erosion attributable to intensive agriculture following the burning of endemic forest. This practice began on a small scale in the 13th century A.D., expanded around cal A.D. 1450,1550, and continued until the near total abandonment of the fields after European contact in the 18th century. Nutrients that naturally occur in high amounts in coastal windward areas due to the long-term, cumulative effect of sea spray were especially impacted. However, thanks to the unique landform of the Kalaupapa Peninsula, nutrient depletion in windward areas was offset by downwind enrichment and likely contributed to the long-term sustainability of the system as a whole. Future research on tropical and arid agriculture should consider the cumulative environmental cost of increased eolian erosion attributable to anthropogenic landscape modification. © 2007 Wiley Periodicals, Inc. [source]


Palynological evidence for Pennsylvanian (Late Carboniferous) vegetation change in the Sydney Coalfield, eastern Canada

GEOLOGICAL JOURNAL, Issue 4 2010
Tatyana K. Dimitrova
Abstract The palynology of clastic samples from seven stratigraphical levels in the late Moscovian Sydney Mines Formation, exposed along the shore at Bras d'Or, Nova Scotia, has been investigated. Most of the samples were from roof shales of major coals; the one sample that was not yielded a much higher proportion of pollen derived from extra-basinal vegetation. The four stratigraphically lower roof shale samples yielded essentially similar palynological spectra, with 39,±,4% lycophytes, 9,±,4% sphenophylls, 23,±,4% tree-ferns, 12,±,4% other ferns and 5,±,3% cordaites. The palynology of the upper part of the investigated succession suggests a shift in vegetation towards one favouring more marattialean tree-ferns, cordaites and conifers, and fewer lycophytes. This correlates with changes in drainage patterns as the alluvial plain migrated seawards and thus changed water tables. No evidence was found to suggest significant climate change at this time. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Decadal change in wetland,woodland boundaries during the late 20th century reflects climatic trends

GLOBAL CHANGE BIOLOGY, Issue 8 2010
DAVID A. KEITH
Abstract Wetlands are important and restricted habitats for dependent biota and play vital roles in landscape function, hydrology and carbon sequestration. They are also likely to be one of the most sensitive components of the terrestrial biosphere to global climate change. An understanding of relationships between wetland persistence and climate is imperative for predicting, mitigating and adapting to the impacts of future climate change on wetland extent and function. We investigated whether mire wetlands had contracted, expanded or remained stable during 1960,2000. We chose a study area encompassing a regional climatic gradient in southeastern Australia, specifically to avoid confounding effects of water extraction on wetland hydrology and extent. We first characterized trends in climate by examining data from local weather stations, which showed a slight increase in precipitation and marked decline in pan evaporation over the relevant period. Remote sensing of vegetation boundaries showed a marked lateral expansion of mires during 1961,1998, and a corresponding contraction of woodland. The spatial patterns in vegetation change were consistent with the regional climatic gradient and showed a weaker co-relationship to fire history. Resource exploitation, wildland fires and autogenic mire development failed to explain the observed expansion of mire vegetation in the absence of climate change. We therefore conclude that the extent of mire wetlands is likely to be sensitive to variation in climatic moisture over decadal time scales. Late 20th-century trends in climatic moisture may be related primarily to reduced irradiance and/or reduced wind speeds. In the 21st century, however, net climatic moisture in this region is projected to decline. As mires are apparently sensitive to hydrological change, we anticipate lateral contraction of mire boundaries in coming decades as projected climatic drying eventuates. This raises concerns about the future hydrological functions, carbon storage capacity and unique biodiversity of these important ecosystems. [source]


Development of a stable isotope index to assess decadal-scale vegetation change and application to woodlands of the Burdekin catchment, Australia

GLOBAL CHANGE BIOLOGY, Issue 7 2007
EVELYN KRULL
Abstract Forty-four study sites were established in remnant woodland in the Burdekin River catchment in tropical north-east Queensland, Australia, to assess recent (decadal) vegetation change. The aim of this study was further to evaluate whether wide-scale vegetation ,thickening' (proliferation of woody plants in formerly more open woodlands) had occurred during the last century, coinciding with significant changes in land management. Soil samples from several depth intervals were size separated into different soil organic carbon (SOC) fractions, which differed from one another by chemical composition and turnover times. Tropical (C4) grasses dominate in the Burdekin catchment, and thus ,13C analyses of SOC fractions with different turnover times can be used to assess whether the relative proportion of trees (C3) and grasses (C4) had changed over time. However, a method was required to permit standardized assessment of the ,13C data for the individual sites within the 13 Mha catchment, which varied in soil and vegetation characteristics. Thus, an index was developed using data from three detailed study sites and global literature to standardize individual isotopic data from different soil depths and SOC fractions to reflect only the changed proportion of trees (C3) to grasses (C4) over decadal timescales. When applied to the 44 individual sites distributed throughout the Burdekin catchment, 64% of the sites were shown to have experienced decadal vegetation thickening, while 29% had remained stable and the remaining 7% had thinned. Thus, the development of this index enabled regional scale assessment and comparison of decadal vegetation patterns without having to rely on prior knowledge of vegetation changes or aerial photography. [source]


Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland

GLOBAL CHANGE BIOLOGY, Issue 2 2007
KRISTA JAATINEN
Abstract We analysed the response of microbial communities, characterized by phospholipid fatty acids (PLFAs), to changing hydrological conditions at sites with different nutrient levels in a southern boreal peatland. Although PLFAs of Gram-negative bacteria were characteristic of the peatland complex, microbial communities differed among sites (ombrotrophic bog, oligotrophic fen, mesotrophic fen) and sampling depths (0,5, 5,10, 10,20, 20,30 cm). The microbial communities in each site changed significantly following water-level drawdown. The patterns of change varied among sites and sampling depths. The relative proportion of Gram-negative bacteria decreased in the upper 10 cm but increased in deeper layers of the fen sites. Fungi benefited from water-level drawdown in the upper 5 cm of the mesotrophic fen, but suffered in the drier surfaces of the ombrotrophic bog, especially in the 5,10 cm layer. In contrast, actinobacteria suffered from water-level drawdown in the mesotrophic fen, but benefited in the drier surfaces of the ombrotrophic bog. Basal respiration rate correlated positively with pH and fungal PLFA, and negatively with depth. We suggest that the changes in microbial community structure after persistent water-level drawdown follow not only the hydrological conditions but also the patterns of vegetation change. Our results imply that changes in structure and activity of the microbial community in response to climate change will be strongly dependent on the type of peatland. [source]


Is the Sonoran Desert losing its cool?

GLOBAL CHANGE BIOLOGY, Issue 12 2005
Jeremy L. Weiss
Abstract Freezing temperatures strongly influence vegetation in the hottest desert of North America, in part determining both its overall boundary and distributions of plant species within. To evaluate recent variability of freezing temperatures in this context, minimum temperature data from weather stations in the Sonoran Desert are examined. Data show widespread warming trends in winter and spring, decreased frequency of freezing temperatures, lengthening of the freeze-free season, and increased minimum temperatures per winter year. Local land use and multidecadal modes of the global climate system such as the Pacific decadal oscillation and the Atlantic multidecadal oscillation do not appear to be principal drivers of this warming. Minimum temperature variability in the Sonoran Desert does, however, correspond to global temperature variability attributed to human-dominated global warming. With warming expected to continue at faster rates throughout the 21st century, potential ecological responses may include contraction of the overall boundary of the Sonoran Desert in the south-east and expansion northward, eastward, and upward in elevation, as well as changes to distributions of plant species within and other characteristics of Sonoran Desert ecosystems. Potential trajectories of vegetation change in the Sonoran Desert region may be affected or made more difficult to predict by uncertain changes in warm season precipitation variability and fire. Opportunities now exist to investigate ecosystem response to regional climate disturbance, as well as to anticipate and plan for continued warming in the Sonoran Desert region. [source]


Above- and below-ground responses of C3,C4 species mixtures to elevated CO2 and soil water availability

GLOBAL CHANGE BIOLOGY, Issue 3 2003
JUSTIN D. DERNER
Abstract We evaluated the influences of CO2[Control, , 370 µmol mol,1; 200 µmol mol,1 above ambient applied by free-air CO2 enrichment (FACE)] and soil water (Wet, Dry) on above- and below-ground responses of C3 (cotton, Gossypium hirsutum) and C4 (sorghum, Sorghum bicolor) plants in monocultures and two density mixtures. In monocultures, CO2 enrichment increased height, leaf area, above-ground biomass and reproductive output of cotton, but not sorghum, and was independent of soil water treatment. In mixtures, cotton, but not sorghum, above-ground biomass and height were generally reduced compared to monocultures, across both CO2 and soil water treatments. Density did not affect individual plant responses of either cotton or sorghum across the other treatments. Total (cotton + sorghum) leaf area and above-ground biomass in low-density mixtures were similar between CO2 treatments, but increased by 17,21% with FACE in high-density mixtures, due to a 121% enhancement of cotton leaf area and a 276% increase in biomass under the FACE treatment. Total root biomass in the upper 1.2 m of the soil was not influenced by CO2 or by soil water in monoculture or mixtures; however, under dry conditions we observed significantly more roots at lower soil depths (> 45 cm). Sorghum roots comprised 81,85% of the total roots in the low-density mixture and 58,73% in the high-density mixture. CO2 -enrichment partly offset negative effects of interspecific competition on cotton in both low- and high-density mixtures by increasing above-ground biomass, with a greater relative increase in the high-density mixture. As a consequence, CO2 -enrichment increased total above-ground yield of the mixture at high density. Individual plant responses to CO2 enrichment in global change models that evaluate mixed plant communities should be adjusted to incorporate feedbacks for interspecific competition. Future field studies in natural ecosystems should address the role that a CO2 -mediated increase in C3 growth may have on subsequent vegetation change. [source]


Detection of vegetation change using reconnaissance imagery

GLOBAL CHANGE BIOLOGY, Issue 3 2001
Herman H. Shugart
Summary Vegetation occurs at its highest elevations on equatorial mountains. Inspection of archival and recent high-resolution reconnaissance imagery of tropical mountains shows, in all cases, features indicating an increase in the elevation of mountain vegetation zones and an increase in vigour in the high-elevation vegetation. These changes are consistent with an increased plant performance from increased levels of carbon dioxide in the atmosphere as well as with a warmer or more favourable climate. [source]


Effect of global atmospheric carbon dioxide on glacial,interglacial vegetation change

GLOBAL ECOLOGY, Issue 5 2000
K. D. Bennett
Abstract Global vegetation changes at the time-scale of the Earth's orbital variations (104,105 years) have been interpreted as a direct effect of consequential climatic changes, especially temperature. At mid- and high latitudes, the evidence from fossil data and general circulation models (GCMs) supporting this hypothesis is strong, but at low latitudes there is a major discrepancy. GCMs predict temperature changes that are less than those inferred from palaeoclimatic data, including the plant fossil record. However, changes in atmospheric CO2 concentrations can account for a high proportion of the low-latitude vegetation change hitherto attributed to temperature change, and may thus explain the discrepancy. The implications of this finding are considerable for understanding patterns of macroevolution and ecosystem development throughout the geological record. [source]


Hydrologic prediction for urban watersheds with the Distributed Hydrology,Soil,Vegetation Model

HYDROLOGICAL PROCESSES, Issue 21 2008
Lan Cuo
Abstract Some relatively straightforward modifications to the Distributed Hydrology,Soil,Vegetation Model (DHSVM) are described that allow it to represent urban hydrological processes. In the modified model, precipitation that falls on impervious surfaces becomes surface runoff, and a spatially varying (depending on land cover) fraction of surface runoff is connected directly to the stream channel, with the remainder stored and slowly released to represent the effects of stormwater detention. The model was evaluated through application to Springbrook Creek watershed in a partially urbanized area of King County, Washington. With calibration, the modified DHSVM simulates hourly streamflow from these urbanized catchments quite well. It is also shown how the revised model can be used to study the effects of continuing urbanization in the much larger Puget Sound basin. Model simulations confirm many previous studies in showing that urbanization increases peak flows and their frequency, and decreases peak flow lag times. The results show that the urbanization parameterizations for DHSVM facilitate use of the model for prediction and/or reconstruction of a range of historic and future changes in land cover that will accompany urbanization as well as other forms of vegetation change. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Vegetation dynamics on rangelands: a critique of the current paradigms

JOURNAL OF APPLIED ECOLOGY, Issue 4 2003
D. D. Briske
Summary 1Rangeland ecologists have been debating the validity of two current paradigms for the evaluation of vegetation dynamics on rangelands. This debate frequently contrasts the conventional model of continuous and reversible vegetation dynamics (range model) with a more contemporary model that can accommodate discontinuous and non-reversible vegetation change (state-and-transition model). 2The range and the state-and-transition models are conceptually related to the equilibrium and non-equilibrium paradigms within ecology, respectively. The methodological dichotomy that has developed between the range and the state-and-transition models has fostered the perception that these two ecological paradigms are mutually exclusive. We challenge this perception and contend that both methodologies and their corresponding paradigms are non-exclusive. 3Equilibrium and non-equilibrium ecosystems are not distinguished on the basis of unique processes or functions, but rather by the evaluation of system dynamics at various temporal and spatial scales. Consequently, ecosystems may express both equilibrium and non-equilibrium dynamics. This confirms early interpretations that ecosystems are distributed along a continuum from equilibrium to non-equilibrium states. 4Although both equilibrium and non-equilibrium dynamics occur in numerous ecosystems, the empirical evidence is frequently confounded by (i) uncertainty regarding the appropriate evidence necessary to distinguish between paradigms; (ii) disproportionate responses among vegetation attributes to climate and grazing; (iii) comparisons among systems with varying degrees of managerial involvement; and (iv) the evaluation of vegetation dynamics at various spatial and temporal scales. 5Synthesis and applications. This critique supports the conclusion that a paradigm shift has not taken place in rangeland ecology, but rather, the debate has forced a more comprehensive interpretation of vegetation dynamics along the entirety of the equilibrium,non-equilibrium continuum. Therefore, the rangeland debate should be redirected from the dichotomy between paradigms to one of paradigm integration. [source]


Predicting plant species' responses to grazing

JOURNAL OF APPLIED ECOLOGY, Issue 5 2001
Peter A. Vesk
Summary 1The aim of this study was to identify whether plant species show consistent responses to livestock grazing. The analyses were based on 35 published studies from Australian rangelands providing 55 species response lists. The primary data set comprised 1554 responses from 829 species. 2Eight-hundred and twenty-nine species were categorized as increasers, decreasers or neutral under grazing. Of 324 species that occurred in at least two response lists, 133 (41%) responded inconsistently, increasing at least once and decreasing at least once. While 59% of species responded consistently, these results suggest that our ability to predict vegetation change under grazing is limited. 3Particular species were not inherently more or less consistent. Rather, as species occurred in more trials, the likelihood of at least one opposite response increased; no species that occurred at least eight times was wholly consistent. A binomial model indicated that the probability of an opposite response, across all species, was 0·275. 4Contrary responses within species must result from context rather than from species' traits. Species were more likely to decrease in response to grazing at lower rainfall than at higher rainfall. Forbs tended to increase under grazing at sites where wet seasons were cooler. Changing the grazing animal was weakly correlated with change in response direction, although not enough for it to be useful for manipulating pasture composition. We found little support for ideas that different responses within species are due to differences in alternative forage available, or due to non-linearity of response to grazing intensity. 5At present it appears we can predict species response direction about three-quarters of the time, at a continental scale. This represents an upper limit of the reliability of prediction based on species' traits alone. Presently we do not know what aspects of the context might allow us to predict reliably the remaining one-quarter of responses. [source]


From ice age to modern: a record of landscape change in an Andean cloud forest

JOURNAL OF BIOGEOGRAPHY, Issue 9 2010
B. G. Valencia
Abstract Aim, To investigate the palaeoecological changes associated with the last ice age, subsequent deglaciation and human occupation of the central Andes. Location, Lake Pacucha, Peruvian Andes (13°36,26, S, 73°19,42, W; 3095 m elevation). Methods, Vegetation assemblages were reconstructed for the last 24 cal. kyr bp (thousand calibrated 14C years before present), based on pollen analysis of sediments from Lake Pacucha. An age model was established using 14C accelerator mass spectrometry dates on bulk sediment. Fossil pollen and sedimentological analyses followed standard methodologies. Results, Puna brava replaced the Andean forest at the elevation of Lake Pacucha at the Last Glacial Maximum (LGM). Deglaciation proceeded rapidly after 16 cal. kyr bp, and near-modern vegetation was established by c. 14 cal. kyr bp. The deglacial was marked by the range expansion of forest taxa as grassland taxa receded in importance. The mid-Holocene was marked by a lowered lake level but relatively unchanged vegetation. Quinoa and maize pollen were found in the latter half of the Holocene. Main conclusions, Temperatures were about 7,8 °C colder than present at this site during the LGM. The pattern of vegetation change was suggestive of microrefugial expansion rather than simple upslope migration. The mid-Holocene droughts were interrupted by rainfall events sufficiently frequent to allow vegetation to survive largely unchanged, despite lowering of the lake level. Human activity at the lake included a 5500-year history of quinoa cultivation and 3000 years of maize cultivation. [source]


A resolution of Mediterranean landscape and vegetation change

JOURNAL OF BIOGEOGRAPHY, Issue 12 2005
Roland Randall
No abstract is available for this article. [source]


The irreversible cattle-driven transformation of a seasonally flooded Australian savanna

JOURNAL OF BIOGEOGRAPHY, Issue 5 2003
Ben R. Sharp
Abstract Aim ,Anecdotal historical and photographic evidence suggests that woody vegetation is increasing dramatically in some northern Australian savanna habitats. Vegetation change in savannas has important implications for pastoral land-use, conservation management, and landscape-scale carbon storage, and informs theoretical debates about ecosystem function. This study seeks to determine the nature, extent and cause(s) of woody vegetation change in a seasonally flooded alluvial savanna habitat. Location ,The study area is located within the seasonally inundated alluvial zone of the tidal portion of the Victoria River, Northern Territory, Australia. The study area has been grazed by domestic stock since c. 1900, prior to which the area was inhabited and more likely regularly burnt by Aboriginal people for thousands of years. Methods ,Digital georeferenced aerial photographic coverages were used to examine and quantify woody vegetation change between 1948 and 1993. Transect surveys of woody and herbaceous vegetation were carried out to ground-truth air-photo results and determine the nature and causes of observed vegetation changes. Results ,There has been a dramatic increase in woody vegetation cover throughout the study area. Vegetation change patterns are roughly uniform across the full range of edaphic habitat variation and are unrelated to the depositional age of fluvial sediments. Two woody species, Eucalyptus microtheca and Excoecaria parvifolia, are predominantly responsible for observed increases. Demographic analyses reveal that woody invasions have been episodic and indicate that in most locations peak woody species establishment occurred in the mid-1970s. Grasses are almost absent in a majority of habitats within the study area. Instead, large areas are covered by scalded soil, dense invasive weed populations, and unpalatable forbs and sedges. What grasses do occur are predominantly of very low value for grazing. The condition of the herbaceous layer renders most of the study area almost completely non-flammable; what fires do burn are small and of low intensity. Main conclusions ,Multiple working hypotheses explaining observed patterns of woody vegetation increase were considered and rejected in turn. The only hypothesis consistent with the evidence is as follows: (1) observed changes are a direct consequence of extreme overgrazing by cattle, most likely when stocking rates peaked in the mid-1970s; (2) prolonged heavy grazing effected the complete transformation of much of the herbaceous vegetation to a new state that is not flammable; and (3) in the absence of regular fire mortality, woody vegetation increased rapidly. The relatively treeless system that existed in 1948 was apparently stable and resilient to moderate grazing levels, and perhaps also to episodic heavy grazing events. However, grazing intensity in excess of a sustainable threshold has forced a transition that is irreversible in the foreseeable future. Stable-state transitions such as this one inform debates at the heart of ecological theory, such as the nature of stability, resilience, equilibrium and carrying capacity in dynamic savanna ecosystems. [source]


Exploring climatic and biotic controls on Holocene vegetation change in Fennoscandia

JOURNAL OF ECOLOGY, Issue 2 2008
Paul A. Miller
Summary 1We investigated the potential drivers of Holocene vegetation changes recorded at four Scandinavian pollen sites, two in Sweden and two in Finland, at a time when they were largely free of anthropogenic influence. 2We used the generalized dynamic vegetation model LPJ-GUESS forced with climate anomaly output from an atmospheric general circulation model to simulate tree species dynamics from 10 000 years ago to the present. The model results were compared to high-resolution pollen accumulation rates gathered at the sites. 3Our results indicate that both the observed northern distributional limits of temperate trees, and the limits of Pinus sylvestris and Alnus incana at the tree line, are a result of millennial variations in summer and winter temperatures. The simulation of several distinct trends in species occurrence observed in the pollen record indicates that a time lag due to the slow spreading of species need not be invoked for most species. 4Sensitivity studies indicate that competition, natural disturbance and the magnitude of interannual variability play key roles in determining the biomass, establishment and even the presence of species near their bioclimatic limits. However, neither disturbance due to fire nor limits on establishment due to drought were likely to have been major determinants of the observed trends on the timescales considered. 5We were unable to limit the modelled occurrence of Picea abies at the study sites to the periods at which it was observed in the pollen records, indicating that we have still not completely understood the driving or limiting factors for Holocene changes in Picea abies abundance. 6Synthesis. This study shows that by combining quantitative vegetation reconstructions with a modern, process-based dynamic vegetation model, we may gain new insights into the potential biotic and abiotic drivers of Holocene vegetation dynamics, and their relative importance. This knowledge will be crucial in enabling us to assess more confidently the response of northern European vegetation to future climate change. [source]


Threshold changes in vegetation along a grazing gradient in Mongolian rangelands

JOURNAL OF ECOLOGY, Issue 1 2008
Takehiro Sasaki
Summary 1The concept of threshold has become important in ecology, but the nature of potential threshold responses of vegetation to grazing in rangeland ecosystems remains poorly understood. We aimed to identify ecological thresholds in vegetation changes along a grazing gradient and to examine whether threshold changes were expressed similarly at a variety of ecological sites. 2To accomplish this, we surveyed the vegetation along grazing gradients at 10 ecological sites, each located at different landscape positions in Mongolia's central and southern rangelands. Evidence for a threshold in changes in floristic composition along the grazing gradient was examined by comparing linear models of the data with nonlinear models fitted using an exponential curve, an inverse curve, a piecewise regression and a sigmoid logistic curve. 3Three nonlinear models (piecewise, exponential and sigmoid) provided a much better fit to the data than the linear models, highlighting the presence of a discontinuity in vegetation changes along the grazing gradient. The shapes of the best-fit models and their fit to the data were generally similar across sites, indicating that the changes in floristic composition were relatively constant below a threshold level of grazing, after which the curve changed sharply. 4Except for two sites, the best-fit models had relatively narrow bootstrap confidence intervals (95% CI), especially around threshold points or zones where the rate of change accelerated, emphasizing that our results were robust and conclusive. 5Synthesis. Our study provided strong evidence for the existence of ecological thresholds in vegetation change along a grazing gradient across all ecological sites. This suggests that vegetation responses to grazing in the study areas are essentially nonlinear. The recognition that real threshold changes exist in real grazing gradients will help land managers to prevent the occurrence of undesirable states and promote the occurrence of desirable states, and will therefore permit a major step forward in the sustainable management of rangeland ecosystems. [source]


Vegetation dynamics of predator-free land-bridge islands

JOURNAL OF ECOLOGY, Issue 2 2006
JOHN TERBORGH
Summary 1We tested the ,green world' hypothesis of Hairston, Smith and Slobodkin by monitoring vegetation change on recently created predator-free land-bridge islands in a huge hydroelectric impoundment, Lago Guri, in the State of Bolivar, Venezuela. 2Our results affirm the green world hypothesis and expose the operation of a strong top-down trophic cascade that negatively impacted nearly every plant species present, implying that community stability is maintained through the action of predators. 3To test the hypothesis, we monitored vegetation on nine predator-free islands and compared demographic parameters to those observed at control sites supporting complete or nearly complete suites of predators. 4Herbivore abundance was high on ,small' (, 0.5, < 2 ha) islands, moderate on ,medium' islands (> 3, < 15 ha) and low on the ,large' landmasses that served for reference. 5Small sapling densities on small islands were only 37% of controls in 1997 (after 11 years of isolation), and when recensused in 2002, had fallen to 25% of controls. High mortality and, especially, low recruitment contributed to the decline in sapling cohorts. 6Sapling decline occurred earlier on small islands, although recruitment failure had become equally pronounced on medium islands by the end of the monitoring period. 7Several mechanisms could potentially account for suppressed sapling recruitment, but the weight of evidence points to herbivory on seedlings and small saplings by leaf-cutter ants (Atta spp. and Acromyrmex sp.). Exposure to prevailing trade winds (windward vs. leeward slopes of islands) had no detectable effect on the density or diversity of seedlings or saplings. [source]