Variable Fluorescence (variable + fluorescence)

Distribution by Scientific Domains


Selected Abstracts


Regulation of Light Energy Utilization and Distribution of Photosynthesis in Five Subtropical Woody Plants

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 3 2007
Nan Liu
Abstract The adaptations and responses of photosynthesis to long- and short-term growth light gradient treatments were investigated in five subtropical forest plants, namely Pinus massoniana Lamb., Schima superba Gardn. et Champ., Castanopsis fissa (Champ. ex Benth.) Rehd. et Wils., Acmena acuminatissima (BI.) Merr et Perry, and Cryptocarya concinna Hance. With diurnal changes in sunlight and air temperature, the de-epoxidation state and lutein content in the five woody plants under three light intensities first increased and then decreased during the day. However, maximal photochemical efficiency (Fv/Fm; where Fm is the maximum fluorescence yield and Fv is variable fluorescence) and the photochemical quantum yields of photosystem (PS) II (,PSII) of the species examined changed in the opposite manner, with those in plants grown under 100% natural light changing the most. After long-term treatment (21 months), anti-oxidant capacity (1, 1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging capacity) and utilization of excitation energy showed differences in modulation by different light intensities. It was shown that A. acuminatissima and C. concinna, as dominant species in the late succession stage of a subtropical forest in Dinghu mountain, South China, were better able to adapt to different light environments. However, P. massoniana, the pioneer species of this forest, exhibited less adaptation to low light intensity and was definitely eliminated by the forest succession process. [source]


FLUORESCENCE-BASED MAXIMAL QUANTUM YIELD FOR PSII AS A DIAGNOSTIC OF NUTRIENT STRESS

JOURNAL OF PHYCOLOGY, Issue 4 2001
Jean-Paul Parkhill
In biological oceanography, it has been widely accepted that the maximum quantum yield of photosynthesis is influenced by nutrient stress. A closely related parameter, the maximum quantum yield for stable charge separation of PSII, (,PSII)m, can be estimated by measuring the increase in fluorescence yield from dark-adapted minimal fluorescence (Fo) to maximal fluorescence (Fm) associated with the closing of photosynthetic reaction centers with saturating light or with a photosynthetic inhibitor such as 3,-(3,4-dichlorophenyl)-1,,1,-dimethyl urea (DCMU). The ratio Fv/Fm (= (Fm, Fo)/Fm) is thus used as a diagnostic of nutrient stress. Published results indicate that Fv/Fm is depressed for nutrient-stressed phytoplankton, both during nutrient starvation (unbalanced growth) and acclimated nutrient limitation (steady-state or balanced growth). In contrast to published results, fluorescence measurements from our laboratory indicate that Fv/Fm is high and insensitive to nutrient limitation for cultures in steady state under a wide range of relative growth rates and irradiance levels. This discrepancy between results could be attributed to differences in measurement systems or to differences in growth conditions. To resolve the uncertainty about Fv/Fm as a diagnostic of nutrient stress, we grew the neritic diatom Thalassiosira pseudonana (Hustedt) Hasle et Heimdal under nutrient-replete and nutrient-stressed conditions, using replicate semicontinuous, batch, and continuous cultures. Fv/Fm was determined using a conventional fluorometer and DCMU and with a pulse amplitude modulated (PAM) fluorometer. Reduction of excitation irradiance in the conventional fluorometer eliminated overestimation of Fo in the DCMU methodology for cultures grown at lower light levels, and for a large range of growth conditions there was a strong correlation between the measurements of Fv/Fm with DCMU and PAM (r2 = 0.77, n = 460). Consistent with the literature, nutrient-replete cultures showed consistently high Fv/Fm (,0.65), independent of growth irradiance. Under nutrient-starved (batch culture and perturbed steady state) conditions, Fv/Fm was significantly correlated to time without the limiting nutrient and to nutrient-limited growth rate before starvation. In contrast to published results, our continuous culture experiments showed that Fv/Fm was not a good measure of nutrient limitation under balanced growth conditions and remained constant (,0.65) and independent of nutrient-limited growth rate under different irradiance levels. Because variable fluorescence can only be used as a diagnostic for nutrient-starved unbalanced growth conditions, a robust measure of nutrient stressed oceanic waters is still required. [source]


Changes in the Room-temperature Emission Spectrum of Chlorophyll During Fast and Slow Phases of the Kautsky Effect in Intact Leaves,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005
Fabrice Franck
ABSTRACT Changes in the room-temperature emission spectrum of chlorophyll (Chl) were analyzed using fast diode-array recordings during the Kautsky effect in mature and in greening barley leaves. In mature leaves, the comparison of Fo (basal level of fluorescence yield at transient O) and FM (maximum level of fluorescence yield at transient M) spectra showed that the relative amplitude of total variable fluorescence was maximal for the 684 nm Photosystem II (PSII) band and minimal for the 725 nm Photosystem I band. During the increase from Fo to FM a progressive redshift of the spectrum of variable fluorescence occurred. This shift reflected the different fluorescence rise kinetics of different layers of chloroplasts inside the leaf. This was verified by simulating the effect of screening on the emission spectrum of isolated chloroplasts and by experiments on greening leaves with low Chl content. In addition, experiments performed at different greening stages showed that the presence of uncoupled Chl at early-greening stages and lightharvesting complex II (LHCII) at later stages have detectable but minor effects on the shape of room-temperature emission spectra. When strong actinic light was applied to mature green leaves, the slow fluorescence yield, which declined from FM to FT (steady-state level of fluorescence yield at transient T), was accompanied by a slight redshift of the 684 nm PSII band because of nonphotochemical quenching of short-wavelengthemitting Chl ascribed to LHCII. [source]


Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings

PHYSIOLOGIA PLANTARUM, Issue 3 2009
Huan-Xin Jiang
Limited data are available on the effects of phosphorus (P) and aluminum (Al) interactions on Citrus spp. growth and photosynthesis. Sour pummelo (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 50, 100, 250 and 500 ,M KH2PO4× 0 and 1.2 mM AlCl3· 6H2O. Thereafter, P and Al in roots, stems and leaves, and leaf chlorophyll (Chl), CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Chl a fluorescence (OJIP) transients were measured. Under Al stress, P increased root Al, but decreased stem and leaf Al. Shoot growth is more sensitive to Al than root growth, CO2 assimilation and OJIP transients. Al decreased CO2 assimilation, Rubisco activity and Chl content, whereas it increased or did not affect intercellular CO2 concentration. Al affected CO2 assimilation more than Rubisco and Chl under 250 and 500 ,M P. Al decreased root, stem and leaf P, leaf maximum quantum yield of primary photochemistry (Fv/Fm) and total performance index (PItot,abs), but increased leaf minimum fluorescence (Fo), relative variable fluorescence at K- and I-steps. P could alleviate Al-induced increase or decrease for all these parameters. We conclude that P alleviated Al-induced inhibition of growth and impairment of the whole photosynthetic electron transport chain from photosystem II (PSII) donor side up to the reduction of end acceptors of photosystem I (PSI), thus preventing photosynthesis inhibition through increasing Al immobilization in roots and P level in roots and shoots. Al-induced impairment of the whole photosynthetic electron transport chain may be associated with growth inhibition. [source]