Variability Properties (variability + property)

Distribution by Scientific Domains


Selected Abstracts


Jets from black hole X-ray binaries: testing, refining and extending empirical models for the coupling to X-rays

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2009
R. P. Fender
ABSTRACT In this paper we study the relation of radio emission to X-ray spectral and variability properties for a large sample of black hole X-ray binary systems. This is done to test, refine and extend , notably into the timing properties , the previously published ,unified model' for the coupling of accretion and ejection in such sources. In 14 outbursts from 11 different sources we find that in every case the peak radio flux, on occasion directly resolved into discrete relativistic ejections, is associated with the bright hard to soft state transition near the peak of the outburst. We also note the association of the radio flaring with periods of X-ray flaring during this transition in most, but not all, of the systems. In the soft state, radio emission is in nearly all cases either undetectable or optically thin, consistent with the suppression of the core jet in these states and ,relic' radio emission from interactions of previously ejected material and the ambient medium. However, these data cannot rule out an intermittent, optically thin, jet in the soft state. In attempting to associate X-ray timing properties with the ejection events we find a close, but not exact, correspondence between phases of very low integrated X-ray variability and such ejections. In fact the data suggest that there is not a perfect one-to-one correspondence between the radio, X-ray spectral or X-ray timing properties, suggesting that they may be linked simply as symptoms of the underlying state change and not causally to one another. We further study the sparse data on the reactivation of the jet during the transition back to the hard state in decay phase of outbursts, and find marginal evidence for this in one case only. In summary we find no strong evidence against the originally proposed model, confirming and extending some aspects of it with a much larger sample, but note that several aspects remain poorly tested. [source]


Can error source terms in forecasting models be represented as Gaussian Markov noises?

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 609 2005
C. Nicolis
Abstract The repercussions of model error on the long term climatological means and on the variability around them are analysed. The extent to which a stochastic representation of error source terms provides a universal correcting mechanism is addressed. General relations are derived linking the model error to the climatological means and the variability properties of a forecasting model subjected to a correcting Gaussian Markov noise on the basis of moment equations associated with Fokker,Planck and Liouville type equations. These relations are implemented in a variety of models giving rise to regular and to chaotic solutions. As it turns out, forecasting models fall into distinct universality classes differing in their response to the effect of noise according to the structure of the Jacobian and the Hessian matrices of the model phase-space velocity. It is concluded that different trends may exist in which the ,correcting' noise tends to depress or, on the contrary, amplify the model error. Copyright © 2005 Royal Meteorological Society. [source]


A sample of GHz-peaked spectrum sources selected at RATAN-600: Spectral and variability properties

ASTRONOMISCHE NACHRICHTEN, Issue 2-3 2009
K.V. Sokolovsky
Abstract We describe a new sample of 226 GPS (GHz-Peaked Spectrum) source candidates selected using simultaneous 1,22 GHz multi-frequency observations with the RATAN-600 radio telescope. Sixty objects in our sample are identified as GPS source candidates for the first time. The candidates were selected on the basis of their broad-band radio spectra only We. discuss the spectral and variability properties of selected objects of different optical classes (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]