Vascular Smooth Muscle Cell Proliferation (vascular + smooth_muscle_cell_proliferation)

Distribution by Scientific Domains


Selected Abstracts


Synthesis and Biological Evaluation of Quinoxaline-5,8-diones that Inhibit Vascular Smooth Muscle Cell Proliferation.

CHEMINFORM, Issue 43 2005
Hwa-Jin Chung
Abstract For Abstract see ChemInform Abstract in Full Text. [source]


Ginsenoside Rb3 Inhibits Angiotensin II-Induced Vascular Smooth Muscle Cells Proliferation

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 2 2010
Tian Wang
VSMCs proliferation was evaluated by [3H]Thymidine incorporation. The cell cycle was examined by flow cytometry. The expression of mRNA of proto-oncogene c-myc, c-fos and c-jun was observed by RT-PCR. Ginsenoside Rb3 had no effects on VSMCs proliferation in physiological condition. Ang II significantly increased the proliferation of VSMCs and the expression of mRNA of proto-oncogene c-myc, c-fos and c-jun. Ginsenoside Rb3 markedly inhibited Ang II-induced VSMCs proliferation. Concomitantly, ginsenoside Rb3 decreased cell cycle progression from G0/G1 to S phase. Furthermore, ginsenoside Rb3 significantly attenuated the expression of mRNA of proto-oncogene c-myc, c-fos and c-jun. This study showed that ginsenoside Rb3 inhibited Ang II-induced VSMCs proliferation, at least in part by inhibiting Ang II-induced G0/G1 to S phase transition and attenuating the expression of mRNA of c-fos, c-jun and c-myc. The findings may explain the beneficial effects of ginsenoside Rb3 in cardiovascular diseases, and it will be useful to develop prevention and therapeutics of cardiovascular diseases. [source]


Endothelin attenuates endothelium-dependent platelet inhibition in man

ACTA PHYSIOLOGICA, Issue 4 2010
R. E. Malmström
Abstract Aim:, The vascular endothelium produces several substances, including nitric oxide (NO) and endothelin-1 (ET-1), which participate in the regulation of vascular tone in humans. Both these substances may exert other actions of importance for cardiovascular disease, e.g. effects on vascular smooth muscle cell proliferation and inflammation, and NO inhibits platelet function. Experiments were designed to investigate the effect of ET-1 on endothelium-dependent vasodilatation and attenuation of platelet activation. Methods:, In 25 healthy male subjects (25 ± 1 years), forearm blood flow was measured by venous occlusion plethysmography, and platelet activity was assessed by whole blood flow cytometry (platelet fibrinogen binding and P-selectin expression) in unstimulated and adenosine diphosphate (ADP)-stimulated samples during administration of ET-1, the endothelium-dependent vasodilator acetylcholine and the NO synthase inhibitor l -NMMA. Results:, Acetylcholine increased forearm blood flow and significantly inhibited platelet activation in both unstimulated and ADP-stimulated samples. In samples stimulated with 0.3 ,m ADP, fibrinogen binding decreased from 41 ± 4% to 31 ± 3% (P < 0.01, n = 11) after acetylcholine administration. The vasodilator response to acetylcholine was significantly impaired during infusions of ET-1 and l -NMMA. ET-1 did not affect platelet activity per se, whereas l -NMMA increased platelet P-selectin expression. Both ET-1 and l -NMMA attenuated the acetylcholine-induced inhibition of platelet activity. Conclusions:, Our study indicates that, further to inhibiting endothelium-dependent vasodilatation, ET-1 may also attenuate endothelium-dependent inhibition of platelet activation induced by acetylcholine. An enhanced ET-1 activity, as suggested in endothelial dysfunction, may affect endothelium-dependent platelet modulation and thereby have pathophysiological implications. [source]


Vascular smooth muscle cell growth-promoting factor/F-spondin inhibits angiogenesis via the blockade of integrin ,v,3 on vascular endothelial cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2001
Yoshito Terai
Vascular smooth muscle cell growth-promoting factor (VSGP) was originally isolated from bovine ovarian follicular fluid as a stimulator of vascular smooth muscle cell proliferation. Homology searches indicate that bovine and human VSGPs are orthologs of rat F-spondin. Here, we examined whether recombinant human VSGP/F-spondin affected the biological activities of endothelial cells. VSGP/F-spondin did not affect the proliferation of human umbilical vein endothelial cells (HUVECs); however, it did inhibit VEGF- or bFGF-stimulated HUVEC migration. To clarify the mechanism of this inhibitory effect, we examined the adhesion of HUVECs to extracellular matrix proteins. VSGP/F-spondin specifically inhibited the spreading of HUVECs on vitronectin via the functional blockade of integrin ,v,3. As a result, VSGP/F-spondin inhibited the tyrosine phosphorylation of focal adhesion kinase (FAK) when HUVECs were plated on vitronectin. Moreover, VSGP/F-spondin inhibited the activation of Akt when HUVECs on vitronectin were stimulated with VEGF. VSGP/F-spondin inhibited tube formation by HUVECs in vitro and neovascularization in the rat cornea in vivo. These results indicate that VSGP/F-spondin inhibits angiogenesis at least in part by the blockade of endothelial integrin ,v,3. © 2001 Wiley-Liss, Inc. [source]


Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit vascular smooth muscle cell proliferation via differential effects on the cell cycle

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2003
Gavin Brooks
ABSTRACT Abnormal vascular smooth muscle cell (VSMC) proliferation plays an important role in the pathogenesis of both atherosclerosis and restenosis. Recent studies suggest that high-dose salicylates, in addition to inhibiting cyclooxygenase activity, exert an antiproliferative effect on VSMC growth both in-vitro and in-vivo. However, whether all non-steroidal anti-inflammatory drugs (NSAIDs) exert similar antiproliferative effects on VSMCs, and do so via a common mechanism of action, remains to be shown. In this study, we demonstrate that the NSAIDs aspirin, sodium salicylate, diclofenac, ibuprofen, indometacin and sulindac induce a dose-dependent inhibition of proliferation in rat A10 VSMCs in the absence of significant cytotoxicity. Flow cytometric analyses showed that exposure of A10 cells to diclofenac, indometacin, ibuprofen and sulindac, in the presence of the mitotic inhibitor, nocodazole, led to a significant G0/G1 arrest. In contrast, the salicylates failed to induce a significant G1 arrest since flow cytometry profiles were not significantly different from control cells. Cyclin A levels were elevated, and hyperphosphorylated p107 was present at significant levels, in salicylate-treated A10 cells, consistent with a post-G1/S block, whereas cyclin A levels were low, and hypophosphorylated p107 was the dominant form, in cells treated with other NSAIDs consistent with a G1 arrest. The ubiquitously expressed cyclin-dependent kinase (CDK) inhibitors, p21 and p27, were increased in all NSAID-treated cells. Our results suggest that diclofenac, indometacin, ibuprofen and sulindac inhibit VSMC proliferation by arresting the cell cycle in the G1 phase, whereas the growth inhibitory effect of salicylates probably affects the late S and/or G2/M phases. Irrespective of mechanism, our results suggest that NSAIDs might be of benefit in the treatment of certain vasculoproliferative disorders. [source]


Reduction of vascular smooth muscle cell proliferation by immunomodulation

BRITISH JOURNAL OF SURGERY (NOW INCLUDES EUROPEAN JOURNAL OF SURGERY), Issue 4 2001
Y. C. Chan
Background: Immunological factors may play an important role in mediating the progression of atherosclerosis and myointimal hyperplasia, with heat shock proteins being implicated as possible autoantigens. The authors have shown previously that immunomodulation can reduce vascular smooth muscle cell (vSMC) proliferation following balloon injury to rat carotid arteries. The aim of the present study was to examine the effects of immunomodulatory agents on the proliferation of rat aortic vSMCs remote from the area of balloon injury. The agents used were SRL172 (heat-killed Mycobacterium vaccae) and heat shock protein 65 kDa (HSP65) in Freund's incomplete adjuvant. Both these agents are known to influence T-cell responses. Methods: Male Sprague,Dawley rats were used. All immunizations were given subcutaneously. Four groups were studied (ten animals in each group): group 1 animals were immunized with normal saline, group 2 received SRL172, group 3 SRL172 and HSP65,Freund's, and group 4 HSP65,Freund's. Three immunizations were performed as well as carotid balloon injury. Three animals died, leaving 37 for analysis. Some 5 weeks later the animals were killed and the aorta was harvested. Standard explant techniques were applied to grow aortic vSMCs until confluency, passaged three times, quiesced, and fetal calf serum (FCS) of varying concentrations (0·4,10 per cent) was then added, incubated for another 48 h and cell counts carried out. Results: The proliferation rate of aortic vSMCs in the control group was significantly greater than that in the other study groups (Fig.). While all the treatment groups had significantly less proliferation compared with the control group (*P < 0·05, ,P < 0·01, Mann,Whitney U test), no statistically significant differences existed between any of the study groups. Conclusion: Immunomodulation may result in a reduction of vSMC proliferation. Although the precise mechanisms involved are unclear, these results are in concordance with previous findings that T-cell immunomodulation decreases the development of myointimal hyperplasia after injury, and suggest that a fundamental phenotypic shift has been produced by these immunizations. [source]


Platelet-activating factor stimulates ovine foetal pulmonary vascular smooth muscle cell proliferation: role of nuclear factor-kappa B and cyclin-dependent kinases

CELL PROLIFERATION, Issue 2 2008
B. O. Ibe
Objective: Platelet-activating factor (PAF) is implicated in pathogenesis of persistent pulmonary hypertension of the neonate (PPHN); PAF is a mitogen for lung fibroblasts. PAF's role in pulmonary vascular smooth muscle cell (PVSMC) proliferation and in hypoxia-induced pulmonary vein (PV) remodelling has not been established and mechanisms for PAF's cell-proliferative effects are not well understood. We investigated involvement of PAF and PAF receptors in PVSMC proliferation. Materials and methods: Cells from pulmonary arteries (SMC-PA) and veins (SMC-PV) were serum starved for 72 h in 5% CO2 in air (normoxia). They were cultured for 24 h more in normoxia or 2% O2 (hypoxia) in 0.1% or 10% foetal bovine serum with 5 µCi/well of [3H]-thymidine, with and without 10 nm PAF. Nuclear factor-kappa B (NF-,B), CDK2 and CDK4 protein expression, and their roles in cell proliferation control were studied. Results: PAF and hypoxia increased SMC-PA and SMC-PV proliferation. WEB2170 inhibited PAF-induced cell proliferation while lyso-PAF had no effect. SMC-PV proliferated more than SMC-PA and PAF plus hypoxia augmented NF-,B protein expression. NF-,B inhibitory peptide attenuated PAF-induced cell proliferation by 50% and PAF increased CDK2 and CDK4 protein expression. The data show that hypoxia and PAF up-regulate PVSMC proliferation via PAF receptor-specific pathway involving NF-,B, CDK2 and CDK4 activations. Conclusion: They suggest that in vivo, in foetal lung low-oxygen environment, where PAF level is high, proliferation of PVSMC will occur readily to modulate PV development and that failure of down-regulation of PAF effects postnatally may result in PPHN. [source]


STIMULATION OF OESTROGEN RECEPTOR-EXPRESSING ENDOTHELIAL CELLS WITH OESTROGEN REDUCES PROLIFERATION OF COCULTURED VASCULAR SMOOTH MUSCLE CELLS

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2008
Malin Odenlund
SUMMARY 1Oestrogen reduces vascular smooth muscle cell proliferation in mouse vascular injury models. Data on the antiproliferative effect of oestrogen in cultured vascular smooth muscle cells (VSMC) are less conclusive than those obtained in whole animal studies. 2In the present study, we investigated the hypothesis that oestrogen-induced attenuation of VSMC proliferation is facilitated by the presence of endothelial cells (EC) using a coculture system of EC and VSMC. 3Treatment with a physiological concentration of oestrogen (17,-estradiol (E2); 100 nmol/L) had no effect on fetal calf serum (FCS)-stimulated DNA synthesis in either A7r5 VSMC or bEnd.3 EC. However, stimulation of bEnd. 3 cells with E2 in a coculture system of bEnd.3 and A7r5 cells reduced FCS-induced DNA synthesis in A7r5 cells by approximately 45%. The nitric oxide synthase inhibitor NG -nitro- l- arginine methyl ester (l -NAME; 100 µmol/L) did not reverse the oestrogen-induced attenuation of DNA synthesis. The antiproliferative effect of E2 may be mediated via either oestrogen receptor (ER) ,, ER, or both because the bEnd.3 cells expressed immunoreactivity for both ER subtypes. 4These data show that ER,- and ER,-expressing endothelial cells, which are stimulated with a physiological concentration of oestrogen, release a factor(s) that arrests the proliferation of cocultured VSMC. Oestrogen-induced attenuation of vascular smooth muscle cell proliferation is not prevented by l -NAME, suggesting that a mechanism other than endothelial NO is involved. [source]