Home About us Contact | |||
Vascular Growth (vascular + growth)
Selected AbstractsDeterminants of Placental VascularityAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 4 2004Donald S. Torry Problem:, Vascular growth during implantation and placentation is critical for successful gestation and it is thought that vascular insufficiencies during placentation contribute to a number of obstetrical complications. However, relatively little is known regarding the regulation of angiogenesis in the placenta. Method of study:, We review literature concerning the potential significance of inadequate placental vascularity as a contributor to the obstetrical complications of spontaneous abortion, fetal growth restriction and preeclampsia. Gene expression assays were used to compare fluctuations of placenta growth factor (PlGF) and PlGF receptor expression in normal and preeclamptic trophoblast in vitro. Results:, Studies have shown that common obstetrical complications manifest altered placental vascularity. Both intrinsic defects (gene knockouts) and extrinsic factors (O2 tension, cytokines, etc) may be responsible for the defects. Some of these factors have been shown to influence trophoblast vascular endothelial growth factor (VEGF)/PlGF expression suggesting this particular family of angiogenic proteins play an important role in placental angiogenesis. Conclusion:, Placental vascularization reflects a complex interaction of regulatory factors. Understanding the regulation of vascular growth in the placenta will provide much needed insight into placenta-related vascular insufficiencies. [source] Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectivesDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 6 2003Ruth B. Caldwell Abstract Retinal neovascularization and macular edema are central features of diabetic retinopathy, the major cause of blindness in the developed world. Current treatments are limited in their efficacy and are associated with significant adverse effects. Characterization of the molecular and cellular processes involved in vascular growth and permeability has led to the recognition that the angiogenic growth factor and vascular permeability factor vascular endothelial growth factor (VEGF) plays a pivotal role in the retinal microvascular complications of diabetes. Therefore, VEGF represents an exciting target for therapeutic intervention in diabetic retinopathy. This review highlights the current understanding of the mechanisms that regulate VEGF gene expression and mediate its biological effects and how these processes may become altered during diabetes. The cellular and molecular alterations that characterize experimental models of diabetes are considered in relation to the influence of high glucose-mediated oxidative stress on VEGF expression and on the mechanisms of VEGF's actions under hyperglycemic induction. Finally, potential therapeutic strategies for preventing VEGF overexpression or blocking its pathological effects in the diabetic retina are considered. Copyright © 2003 John Wiley & Sons, Ltd. [source] The origin of the endothelial cells: an evo-devo approach for the invertebrate/vertebrate transition of the circulatory systemEVOLUTION AND DEVELOPMENT, Issue 4 2005R. Muñoz-Chápuli Summary Circulatory systems of vertebrate and invertebrate metazoans are very different. Large vessels of invertebrates are constituted of spaces and lacunae located between the basement membranes of endodermal and mesodermal epithelia, and they lack an endothelial lining. Myoepithelial differentation of the coelomic cells covering hemal spaces is a frequent event, and myoepithelial cells often form microvessels in some large invertebrates. There is no phylogenetic theory about the origin of the endothelial cells in vertebrates. We herein propose that endothelial cells originated from a type of specialized blood cells, called amoebocytes, that adhere to the vascular basement membrane. The transition between amoebocytes and endothelium involved the acquisition of an epithelial phenotype. We suggest that immunological cooperation was the earliest function of these protoendothelial cells. Furthermore, their ability to transiently recover the migratory, invasive phenotype of amoebocytes (i.e., the angiogenic phenotype) allowed for vascular growth from the original visceral areas to the well-developed somatic areas of vertebrates (especially the tail, head, and neural tube). We also hypothesize that pericytes and smooth muscle cells derived from myoepithelial cells detached from the coelomic lining. As the origin of blood cells in invertebrates is probably coelomic, our hypothesis relates the origin of all the elements of the circulatory system with the coelomic wall. We have collected from the literature a number of comparative and developmental data supporting our hypothesis, for example the localization of the vascular endothelial growth factor receptor-2 ortholog in hemocytes of Drosophila or the fact that circulating progenitors can differentiate into endothelial cells even in adult vertebrates. [source] Angiogenesis in the female reproductive organs: pathological implicationsINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2002Lawrence P. Reynolds Summary. The female reproductive organs (ovary, uterus, and placenta) are some of the few adult tissues that exhibit regular intervals of rapid growth. They also are highly vascular and have high rates of blood flow. Angiogenesis, or vascular growth, is therefore an important component of the growth and function of these tissues. As with many other tissues, vascular endothelial growth factors (VEGFs) and fibroblast growth factors (FGFs) appear to be major angiogenic factors in the female reproductive organs. A variety of pathologies of the female reproductive organs are associated with disturbances of the angiogenic process, including dysfunctional uterine bleeding, endometrial hyperplasia and carcinoma, endometriosis, failed implantation and subnormal foetal growth, myometrial fibroids (uterine leiomyomas) and adenomyosis, ovarian hyperstimulation syndrome, ovarian carcinoma, and polycystic ovary syndrome. These pathologies are also associated with altered expression of VEGFs and/or FGFs. In the near future, angiogenic or antiangiogenic compounds may prove to be effective therapeutic agents for treating these pathologies. In addition, monitoring of angiogenesis or angiogenic factor expression may provide a means of assessing the efficacy of these therapies. [source] Angiogenesis in Developing Follicle and Corpus LuteumREPRODUCTION IN DOMESTIC ANIMALS, Issue 4 2004C Tamanini Contents Angiogenesis is a process of vascular growth that is mainly limited to the reproductive system in healthy adult animals. The development of new blood vessels in the ovary is essential to guarantee the necessary supply of nutrients and hormones to promote follicular growth and corpus luteum formation. In developing follicles, the pre-existing endothelial cells that form the vascular network in the theca layer markedly develop in response to the stimulus of several growth factors, mainly produced by granulosa cells, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). The angiogenic factors also promote vessel permeability, thus favouring the antrum formation and the events inducing follicle rupture. After ovulation, newly formed blood vessels cross the basement membrane between theca and granulosa layers and continue a rapid growth to sustain corpus luteum development and function. The length of luteal vascular growth varies in cycling and pregnant animals and among species; both angiogenesis and subsequent angioregression are finely regulated by systemic and local factors. The control of angiogenic development in the ovary could be a useful tool to improve animal reproductive performances. [source] Determinants of Placental VascularityAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 4 2004Donald S. Torry Problem:, Vascular growth during implantation and placentation is critical for successful gestation and it is thought that vascular insufficiencies during placentation contribute to a number of obstetrical complications. However, relatively little is known regarding the regulation of angiogenesis in the placenta. Method of study:, We review literature concerning the potential significance of inadequate placental vascularity as a contributor to the obstetrical complications of spontaneous abortion, fetal growth restriction and preeclampsia. Gene expression assays were used to compare fluctuations of placenta growth factor (PlGF) and PlGF receptor expression in normal and preeclamptic trophoblast in vitro. Results:, Studies have shown that common obstetrical complications manifest altered placental vascularity. Both intrinsic defects (gene knockouts) and extrinsic factors (O2 tension, cytokines, etc) may be responsible for the defects. Some of these factors have been shown to influence trophoblast vascular endothelial growth factor (VEGF)/PlGF expression suggesting this particular family of angiogenic proteins play an important role in placental angiogenesis. Conclusion:, Placental vascularization reflects a complex interaction of regulatory factors. Understanding the regulation of vascular growth in the placenta will provide much needed insight into placenta-related vascular insufficiencies. [source] Dermatological aspects of angiogenesisBRITISH JOURNAL OF DERMATOLOGY, Issue 5 2002P. Velasco Summary Neovascularization is vital for the growth of tumours, providing a lifeline for sustenance and waste disposal. Tumour vessels can grow by sprouting, intussusception or by incorporating bone marrow-derived endothelial precursor cells into growing vessels. Recent advances in vascular biology have identified some key factors that control vascular growth, and have led to the hypothesis that in normal tissues vascular quiescence is maintained by the dominant influence of endogenous angiogenesis inhibitors over angiogenic stimuli. In contrast, increased secretion of angiogenic factors and the down-regulation of endogenous angiogenesis inhibitors induce tumour angiogenesis. Vascular quiescence in the skin seems to be primarily maintained by a balance between the endogenous angiogenesis inhibitors thrombospondin 1 and thrombospondin 2 and the potent proangiogenic factor vascular endothelial growth factor A. Inhibiting tumour growth by controlling angiogenesis is an intriguing approach with great potential for the treatment of vascular tumours such as haemangioma, Kaposi's sarcoma and solid cutaneous tumours such as squamous cell carcinoma, melanoma and basal cell carcinoma. In this review, the role of angiogenesis and more recent topics such as lymphangiogenesis in cutaneous tumour growth, invasion and metastasis will be discussed. [source] Phosphoinositide 3-kinase mediated signalling contributes to development of diabetes-induced abnormal vascular reactivity of rat carotid arteryCELL BIOCHEMISTRY AND FUNCTION, Issue 1 2006Mariam H. M. Yousif Abstract Diabetes mellitus is associated with vascular complications, including an impairment of vascular function and alterations in the reactivity of blood vessels to vasoactive agents. Phosphatidylinositol 3-kinase (PI3K) is a signalling enzyme that plays key roles in vascular growth, proliferation and cellular apoptosis and is implicated in modulating vascular smooth muscle contractility. The aim of this study was to determine whether PI3K plays a role in development of diabetes-induced altered vascular reactivity to selected vasoconstrictors and vasodilators. The effect of 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), a selective PI3K inhibitor, on isolated segments of carotid arteries from streptozotocin (STZ)-diabetic rats was investigated. Ring segments of the isolated carotid arteries were mounted in organ baths to measure changes in isometric tension. Our results showed that STZ treatment produced an increase in the vasoconstrictor response to norepinephrine (NE), angiotensin II (Ang II) and endothelin-1 (ET-1) and an attenuated vasodilator response to carbachol and histamine in the isolated carotid arteries from STZ-diabetic animals. Diabetes-induced impaired vascular responsiveness to the vasoactive agonists was prevented by chronic inhibition of PI3K by LY294002 even though blood glucose levels remained high. This is the first study to show that selective inhibition of PI3K can attenuate the development of diabetes-induced abnormal vascular reactivity in the isolated carotid arteries of diabetic rats. Copyright © 2005 John Wiley & Sons, Ltd. [source] |