Home About us Contact | |||
Varying Patterns (varying + pattern)
Selected AbstractsVarying patterns of coexistence of two mouse lemur species (Microcebus ravelobensis and M. murinus) in a heterogeneous landscapeAMERICAN JOURNAL OF PRIMATOLOGY, Issue 11 2009Romule Rakotondravony Abstract The coexistence of closely related species is not easily understood on the basis of ecological theories. This study investigates the extent of coexistence of two congeneric species of Microcebus murinus (MUR) and M. ravelobensis (RAV) in northwestern Madagascar. Their presence and local relative population densities were determined by capturing and nocturnal transect counts and compared at 22 study sites in the Ankarafantsika National Park. All sites were characterized with regard to their altitude, access to surface water, and 19 structural vegetation characteristics. RAV and MUR were not equally distributed over this regional scale. RAV occurred in more sites and at higher maximum densities than MUR. The relative population densities of both species were significantly and negatively correlated with each other. Whereas the relative population densities of MUR increased with altitude and were highest in dry habitats far from surface water, the relative population densities of RAV generally decreased with altitude and were highest in low altitude habitats close to surface water. The results of the vegetation characteristics also reflect these general trends. The divergent pattern of local and regional coexistence of these two species is discussed and can be best explained either by the existence of a spatially heterogeneous competitive environment or by independent evolutionary pathways in different historic environments. Am. J. Primatol. 71:928,938, 2009. © 2009 Wiley-Liss, Inc. [source] Intensity modulation of TMS-induced cortical excitation: Primary motor cortexHUMAN BRAIN MAPPING, Issue 6 2006Peter T. Fox Abstract The intensity dependence of the local and remote effects of transcranial magnetic stimulation (TMS) on human motor cortex was characterized using positron-emission tomography (PET) measurements of regional blood flow (BF) and concurrent electromyographic (EMG) measurements of the motor-evoked potential (MEP). Twelve normal volunteers were studied by applying 3 Hz TMS to the hand region of primary motor cortex (M1hand). Three stimulation intensities were used: 75%, 100%, and 125% of the motor threshold (MT). MEP amplitude increased nonlinearly with increasing stimulus intensity. The rate of rise in MEP amplitude was greater above MT than below. The hemodynamic response in M1hand was an increase in BF. Hemodynamic variables quantified for M1hand included value-normalized counts (VNC), intensity (z-score), and extent (mm3). All three hemodynamic response variables increased nonlinearly with stimulus intensity, closely mirroring the MEP intensity-response function. VNC was the hemodynamic response variable which showed the most significant effect of TMS intensity. VNC correlated strongly with MEP amplitude, both within and between subjects. Remote regions showed varying patterns of intensity response, which we interpret as reflecting varying levels of neuronal excitability and/or functional coupling in the conditions studied. Hum Brain Mapp, 2005. © 2005 Wiley-Liss, Inc. [source] Measuring Synchronization and Convergence of Business Cycles for the Euro area, UK and US,OXFORD BULLETIN OF ECONOMICS & STATISTICS, Issue 1 2008Siem Jan Koopman Abstract This paper investigates business cycle relations among different economies in the Euro area. Cyclical dynamics are explicitly modelled as part of a time series model. We introduce mechanisms that allow for increasing or diminishing phase shifts and for time-varying association patterns in different cycles. Standard Kalman filter techniques are used to estimate the parameters simultaneously by maximum likelihood. The empirical illustrations are based on gross domestic product (GDP) series of seven European countries that are compared with the GDP series of the Euro area and that of the US. The original integrated time series are band-pass filtered. We find that there is an increasing resemblance between the business cycle fluctuations of the European countries analysed and those of the Euro area, although with varying patterns. [source] Distribution of olfactory epithelium in the primate nasal cavity: Are microsmia and macrosmia valid morphological concepts?THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 1 2004Timothy D. Smith Abstract The terms "microsmatic" and "macrosmatic" are used to compare species with greater versus lesser olfactory capabilities, such as carnivores compared to certain primates. These categories have been morphologically defined based on the size of olfactory bulb and surface area of olfactory epithelium in the nasal fossa. The present study examines assumptions regarding the morphological relationship of bony elements to the olfactory mucosa, the utility of olfactory epithelial surface area as a comparative measurement, and the utility of the microsmatic concept. We examined the distribution of olfactory neuroepithelium (OE) across the anteroposterior length of the nasal fossa (from the first completely enclosed cross-section of the nasal fossa to the choanae) in the microsmatic marmoset (Callithrix jacchus) compared to four species of nocturnal strepsirrhines (Otolemur crassicaudatus, O. garnetti, Microcebus murinus, and Cheirogaleus medius). Adults of all species were examined and infant C. jacchus, O. crassicaudatus, M. murinus, and C. medius were also examined. All specimens were serially sectioned in the coronal plane and prepared for light microscopic study. Distribution of OE across all the turbinals, nasal septal surfaces, and accessory spaces of the nasal chamber was recorded for each specimen. The right nasal fossae of one adult C. jacchus and one neonatal M. murinus were also three-dimensionally reconstructed using Scion Image software to reveal OE distribution. Findings showed OE to be distributed relatively more anteriorly in adult C. jacchus compared to strepsirrhines. It was also distributed more anteriorly along the nasal septal walls and recesses in neonates than adults. Our findings also showed that OE surface area was not a reliable proxy for receptor neuron numbers due to differing OE thickness among species. Such results indicate that nasal cavity morphology must be carefully reconsidered regarding traditional functional roles (olfaction versus air conditioning) assigned to various nasal cavity structures. At present, the microsmatic concept itself lacks a basis in nasal chamber morphology, since OE may have varying patterns of distribution among different primates. © 2004 Wiley-Liss, Inc. [source] |