Home About us Contact | |||
Vanadium Oxide (vanadium + oxide)
Selected AbstractsChemInform Abstract: Investigation of Yttrium and Polyvalent Ion Intercalation into Nanocrystalline Vanadium Oxide.CHEMINFORM, Issue 45 2001G. G. Amatucci Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Dehydration and Dehydrogenation of Alcohols with Mononuclear Cationic Vanadium Oxides in the Gas Phase and Energetics of VOnH0/+ (n = 2, 3),EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 17 2007Marianne Engeser Abstract The ion/molecule reactions of selected alcohols with the vanadium oxide cations VO+ and VO2+ are studied by Fourier-transform ion-cyclotron resonance (FT-ICR) mass spectrometry. Dehydrogenation is the dominating reaction pathway for methanol and allyl alcohols. With larger or less unsaturated alcohols, dehydration and carbocation formations prevail. While the valence in VO+ remains unchanged during alcohol dehydrogenation, VO2+ is reduced to VIII. Thermochemical data for VO2H0/+, VO3H and VO3H2+ are derived by means of ICR bracketing. The experimental results are further complemented by ab initio calculations using density functional theory. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] Reduced Surfactant Uptake in Three Dimensional Assemblies of VOx Nanotubes Improves Reversible Li+ Intercalation and Charge CapacityADVANCED FUNCTIONAL MATERIALS, Issue 11 2009Colm O'Dwyer Abstract The relationship between the nanoscale structure of vanadium pentoxide nanotubes and their ability to accommodate Li+ during intercalation/deintercalation is explored. The nanotubes are synthesized using two different precursors through a surfactant-assisted templating method, resulting in standalone VOx (vanadium oxide) nanotubes and also "nano-urchin". Under highly reducing conditions, where the interlaminar uptake of primary alkylamines is maximized, standalone nanotubes exhibit near-perfect scrolled layers and long-range structural order even at the molecular level. Under less reducing conditions, the degree of amine uptake is reduced due to a lower density of V4+ sites and less V2O5 is functionalized with adsorbed alkylammonium cations. This is typical of the nano-urchin structure. High-resolution TEM studies revealed the unique observation of nanometer-scale nanocrystals of pristine unreacted V2O5 throughout the length of the nanotubes in the nano-urchin. Electrochemical intercalation studies revealed that the very well ordered xerogel-based nanotubes exhibit similar specific capacities (235,mA h g,1) to Na+ -exchange nanorolls of VOx (200,mA h g,1). By comparison, the theoretical maximum value is reported to be 240,mA h g,1. The VOTPP-based nanotubes of the nano-urchin 3D assemblies, however, exhibit useful charge capacities exceeding 437,mA h g,1, which is a considerable advance for VOx based nanomaterials and one of the highest known capacities for Li+ intercalated laminar vanadates. [source] Smart sunglasses based on electrochromic polymersPOLYMER ENGINEERING & SCIENCE, Issue 11 2008Chao Ma Smart sunglasses based on electrochromic polymers are proposed and developed in this study. This article discusses the design, processing, and the optical and electrical performance of a prototype smart sunglasses based on cathodic electrochromic (EC) polymers, which show several merits compared with traditional materials for sunglasses lens as well as other smart window materials. It is a multilayer design of device. The conjugated polymer, poly[3,3-dimethyl-3,4-dihydro-2H-thieno [3,4-b] [1,4]dioxepine] (PProDOT-Me2), is utilized as the electrochromic working layer. The counter layer of the device is vanadium oxide (V2O5) film, which serves as an ion storage layer. There is also a polymer gel electrolyte acting as the ionic transport layer, sandwiched between the working and counter layers. The characteristics of the prototype device are reported, including transmittance (%T), driving power, response time, open circuit memory, and lifetime. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers [source] X-ray powder diffraction and electron diffraction studies of the thortveitite-related L phase, (Zn,Mn)2V2O7ACTA CRYSTALLOGRAPHICA SECTION B, Issue 2 2009Kevin M. Knowles The phase designated ,-Zn3(VO4)2 reported as a minor second phase in zinc oxide-based varistor materials doped with vanadium oxide and manganese oxide is shown to be the L phase, (Zn1,,,xMnx)2V2O7 (0.188 < x < 0.538), in the pseudo-binary Mn2V2O7,Zn2V2O7 system. Analysis of X-ray powder diffraction patterns and electron diffraction patterns of this phase shows that the previously published a, c and , values for this thortveitite-related phase are incorrect. Instead, Rietveld refinement of the X-ray powder pattern of the L phase shows that it has a monoclinic C lattice with Z = 6, with a = 10.3791,(1), b = 8.5557,(1), c = 9.3539,(1),Å and , = 98.467,(1)°. Although prior convergent-beam electron diffraction work of `,-Zn3(VO4)2' confirmed the C Bravais lattice, the space group was found to be Cm rather than C2/m, the difference perhaps arising from the inability of the X-rays to detect small displacements of oxygen. Attempts to refine the structure in Cm did not produce improved R factors. The relationship between the crystal structure of the L phase and the high-temperature C2/m,,-Zn2V2O7 thortveitite-type solid solution is discussed. [source] Pb2.63Cd2V3O12, a cation-deficient garnet-type vanadateACTA CRYSTALLOGRAPHICA SECTION C, Issue 7 2007Alexander A. Tsirlin In the crystal structure of the cation-deficient garnet Pb2.63Cd2V3O12 (lead cadmium vanadium oxide), the Cd and V atoms fully occupy octahedral and tetrahedral sites, respectively, whereas the Pb atoms partially occupy a dodecahedral site. The total Pb and Cd content indicates that vanadium is slightly reduced from the +5 oxidation state. [source] |