Home About us Contact | |||
Vacuum
Kinds of Vacuum Terms modified by Vacuum Selected AbstractsBOTULINAL TOXIN PRODUCTION IN VACUUM AND CARBON DIOXIDE PACKAGED MEAT DURING CHILLED STORAGE AT 2 AND 4CJOURNAL OF FOOD SAFETY, Issue 2 2000S.M. MOORHEAD ABSTRACT This study was undertaken to determine if carbon dioxide packaging of meat afforded a food safety advantage over vacuum packaging with respect to botulinal toxin production during chilled storage. A cocktail of washed spores from five toxigenic clostridial strains , four reference Clostridium botulinumstrains [types A, B (2 strains) and E] and a C. butyricum type E strain , was inoculated onto lamb chumps. Of these strains, two were psychrotolerant. The inoculated chumps were individually carbon dioxide packaged and duplicate packs were placed into storage at 10, 8, 6, 4 and 2C. All storage regimens included a weekly defrost cycle when meat surface temperatures increased by up to 6 to 7C during a 2 to 2.5 h period. After 84 days storage, packs were assessed for the presence of botulinal toxin using the mouse bioassay procedure. All packs contained botulinal toxin. To compare toxin production in vacuum and carbon dioxide packs at chill temperatures, the challenge trials were repeated for 4 and 2C storage. Packs were examined at regular intervals for toxin presence. Both pack types contained toxin after 21 and 48 days storage at 4 and 2C, respectively. In the unlikely, but not impossible, event that raw meat would be contaminated with psychrotolerant toxincapable clostridial spores, product safety, with respect to botulinal toxin presence after prolonged chilled storage, requires storage temperatures to be maintained below 2C for both vacuum and carbon dioxide packaged product. [source] Organic Photovoltaic Cells Based On Solvent-Annealed, Textured Titanyl Phthalocyanine/C60 HeterojunctionsADVANCED FUNCTIONAL MATERIALS, Issue 12 2009Diogenes Placencia Abstract Organic photovoltaic cells (OPV) with good near-IR photoactivity are created from highly textured titanyl phthalocyanine (TiOPc)/C60 heterojunctions. Vacuum deposited TiOPc thin films are converted to the near-IR absorbing "Phase II" polymorph using post-deposition solvent annealing. The Phase I,,,Phase II transition broadens the absorbance spectrum of the Pc film producing absorptivities (,,,,105,cm,1) from 600,900,nm, along with substantial texturing of the Pc layer. Atomic force microscopy and field-emission scanning electron microscopy of the solvent annealed films show that the surface roughness of the Pc layers is increased by a factor of greater than 2× as a result of the phase transformation. Current,voltage (J,V) responses for white light illumination of ITO (100,nm)/TiOPc (20,nm)/C60 (40,nm)/BCP (10,nm)/Al (100,nm) OPVs show a near doubling of the short-circuit photocurrent (JSC), with only a small decrease in open-circuit photopotential (VOC), and a concomitant increase in power conversion efficiency. Incident photon current efficiency (IPCE) plots confirmed the enhanced near-IR OPV activity, with maximum IPCE values of ca. 30% for devices using Phase II-only TiOPc films. UV-photoelectron spectroscopy (UPS) of TiOPc/C60 heterojunctions, for both Phase I and Phase II TiOPc films, suggest that the Phase II polymorph has nearly the same HOMO energy as seen in the Phase I polymorph, and similar frontier orbital energy offsets, EHOMOPc,ELUMOC60, leading to comparable open-circuit photovoltages. These studies suggest new strategies for the formation of higher efficiency OPVs using processing conditions which lead to enhance near-IR absorptivities, and extensive texturing of crystalline donor or acceptor films. [source] Comparison of the Mobility,Carrier Density Relation in Polymer and Single-Crystal Organic Transistors Employing Vacuum and Liquid Gate DielectricsADVANCED MATERIALS, Issue 21 2009Yu Xia The mobility of polymer and single-crystal transistors using a universal test-bed where the injected carrier density can vary more than four orders of magnitude are investigated and compared. A striking difference in the mobility,carrier density relationship was observed, revealing a fundamentally different charge-transport mechanism between polymer and single-crystal transistors. [source] Decontamination of deboned chicken legs by vacuum-tumbling in lactic acid solutionINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 1 2006François Deumier Summary Vacuum tumbling in a 1,5% lactic acid solution for a short time (1,10 min) improves the microbiological quality of deboned chicken legs, while inducing a light acidification and water absorption. The most significant variable of the process is the tumbling speed. High tumbling speeds lead to a high decontamination level of the chicken legs with regard to total viable counts and Enterobacteriaceae. Sodium lactate alone is unable to induce any decontamination at the same concentrations. Decontamination is probably more linked to acidification than to lactate ions. The use of vacuum tumbled (1 min in a 1% lactic acid solution) deboned chicken legs in the industrial manufacture of fresh chicken sausages led to a clear decrease in the number of Salmonella -positive batches. The incidence of positive batches was reduced threefold and the acid decontamination process did not adversely affect the sensory quality of the sausages. [source] Vacuum Assisted Closure: Recommendations for UseINTERNATIONAL WOUND JOURNAL, Issue 2008A Consensus Document First page of article [source] KINETICS OF OSMOTIC DEHYDRATION IN ORANGE AND MANDARIN PEELSJOURNAL OF FOOD PROCESS ENGINEERING, Issue 4 2001M. CHÁFER ABSTRACT The nutritional and health properties of some citrus peel components such as pectin, flavonoids, carotenoids or limonene make interesting developing processing methods to obtain peel stable products, maintaining its quality attributes, increasing its sweetness and improving its sensory acceptability. In this sense, osmotic dehydration represents a useful alternative by using sugar solutions at mild temperature. Kinetics of osmotic treatments of orange and mandarin peels carried out at atmospheric pressure and by applying a vacuum pulse at the beginning of the process were analysed at 30, 40 and 50C, in 65 °Brix sucrose, 55 °Brix glucose and 60 °Brix rectified grape must. Vacuum pulse greatly affected mass transfer behavior of peels due to the greatly porous structure of albedo. So, PVOD treatments greatly accelerate the changes in the product composition in line with an increase in the peel sample thickness. In osmotic processes at atmospheric pressure, sample impregnation occurs coupled with osmotic process, but much longer treatments are required to achieve a reasonable concentration degree which assures sample stability. Low viscosity osmotic solutions seems recommendable in order to promote both diffusional and hydrodynamic transport, in vacuum pulsed pretreatments at mild temperatures. [source] Energy Consumption, Density, and Rehydration Rate of Vacuum Microwave- and Hot-Air Convection- Dehydrated TomatoesJOURNAL OF FOOD SCIENCE, Issue 6 2002T.D. Durance ABSTRACT: Vacuum to lower boiling temperature and microwaves for energy transfer can provide very rapid dehydration at low temperatures. Tomato sections were dehydrated in a batch convection air dryer (AD), a 16 kW vacuum microwave (VM) dryer, or by 1 of 3 combination processes. Drying rate of the 100% VM process was 18 times that of the 100% AD process. Only a slight falling rate effect was noted in VM drying AD and VM in sequence allowed the operator to choose any process time between 0.8 and 14.75 h. In this instance the least energy consumption occurred in the 100% VM process. Lowest energy cost was found for the 70% AD / 30% VM process. These results are expected to be strongly dependent upon the scale and design of dryers. Tomatoes finish-dried by VM exhibited a puffed structure associated with faster rehydration. [source] Fourteenth International Summer School on Vacuum, Electron and Ion Technologies (VEIT)PLASMA PROCESSES AND POLYMERS, Issue 6 2005Nikolay Guerassimov Plasma News: This section contains news of the plasma community all over the world. Articles about, for example, people, projects, and market trends are welcome. Suggestions should be sent to the editorial office of Plasma Processes and Polymers, preferably by E-mail to plasma@wiley-vch.de. The editorial office decides which articles will be published. [source] Flow modeling and simulation for vacuum assisted resin transfer molding process with the equivalent permeability methodPOLYMER COMPOSITES, Issue 2 2004Renliang Chen Vacuum assisted resin transfer molding (VARTM) offers numerous advantages over traditional resin transfer molding, such as lower tooling costs, shorter mold filling time and better scalability for large structures. In the VARTM process, complete filling of the mold with adequate wet-out of the fibrous preform has a critical impact on the process efficiency and product quality. Simulation is a powerful tool for understanding the resin flow in the VARTM process. However, conventional three-dimensional Control Volume/Finite Element Method (CV/FEM) based simulation models often require extensive computations, and their application to process modeling of large part fabrication is limited. This paper introduces a new approach to model the flow in the VARTM process based on the concept of equivalent permeability to significantly reduce computation time for VARTM flow simulation of large parts. The equivalent permeability model of high permeable medium (HPM) proposed in the study can significantly increase convergence efficiency of simulation by properly adjusting the aspect ratio of HPM elements. The equivalent permeability model of flow channel can simplify the computational model of the CV/FEM simulation for VARTM processes. This new modeling technique was validated by the results from conventional 3D computational methods and experiments. The model was further validated with a case study of an automobile hood component fabrication. The flow simulation results of the equivalent permeability models were in agreement with those from experiments. The results indicate that the computational time required by this new approach was greatly reduced compared to that by the conventional 3D CV/FEM simulation model, while maintaining the accuracy, of filling time and flow pattern. This approach makes the flow simulation of large VARTM parts with 3D CV/FEM method computationally feasible and may help broaden the application base of the process simulation. Polym. Compos. 25:146,164, 2004. © 2004 Society of Plastics Engineers. [source] Resin infusion of triaxially braided preforms with through-the-thickness reinforcementPOLYMER COMPOSITES, Issue 2 2003Jay R. Sayre Vacuum assisted resin transfer molding (VARTM) has shown potential to significantly reduce the manufacturing cost of high-performance aerospace composite structures. In this investigation, high fiber volume fraction, triaxially braided preforms with through-the-thickness stitching were successfully resin infiltrated by the VARTM process. The preforms, resin infiltrated with three different resin systems, produced cured composites that were fully wet-out and void free. A three-dimensional finite element model was used to simulate resin infusion into the preforms. The predicted flow patterns agreed well with the flow patterns observed during the infiltration process. The total infiltration times calculated using the model compared well with the measured times. [source] Medical Marijuana 2010: It's Time to Fix the Regulatory VacuumTHE JOURNAL OF LAW, MEDICINE & ETHICS, Issue 3 2010Peter J. Cohen This article examines the history of assigning a banned status to medical marijuana; describes the politics of medical marijuana research; provides evidence of the scientifically demonstrated efficacy and safety of Cannabis for certain pathologic conditions; analyzes several vaguely worded state statutes governing the recommendation, distribution, and use of "medical marijuana" that render its use open to abuse; and recommends the development and enforcement of statutory and regulatory reforms that would bring state oversight of this drug into agreement with stringent federal regulation of other controlled substances with proven medical utility. [source] Vacuum electrodynamics of accelerated systems: Nonlocal Maxwell's equationsANNALEN DER PHYSIK, Issue 10 2003B. Mashhoon Abstract The nonlocal electrodynamics of accelerated systems is discussed in connection with the development of Lorentz-invariant nonlocal field equations. Nonlocal Maxwell's equations are presented explicitly for certain linearly accelerated systems. In general, the field equations remain nonlocal even after accelerated motion has ceased. [source] DC conduction in bis(dimethylglyoximato)palladium(II) thin filmsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2007A. A. Dakhel Abstract Bis(dimethylglyoximato)palladium (II) complex thin films of polycrystalline structure were prepared by sublimation in a vacuum at 140°C on p-Si substrates. After carrying out the characterisation of the prepared films by X-ray diffraction and X-ray fluorescence methods, Al-complex-Si MIS devices were fabricated. The constructed MIS structure was characterised by measuring the capacitance as a function of gate voltage at 1 MHz. The dependence of dc-current density on gate voltage and temperature in the range of 293 - 328 K of the MIS device was measured. It was found that the experimental data follow the trap-charge-limited space-charge-limited conductivity mechanism, from which the total concentration and the exponential energy distribution of the trap density were determined. In general, the measured quantities suggest that the conduction can be realised by thermally assisted hopping between localised states bundled in a very narrow band lying energetically near the mobility band edge. Moreover, results show that it is possible to use a film of the complex in applications of low-k dielectric material. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Vapour growth and morphology of PbBr2 crystalsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 7 2007Takamasa Kaito Abstract In this paper, the vapour transport of PbBr2 under vacuum during vacuum distillation refining and its condensation on the wall of the vessel were described. The macro- and micro morphologies of PbBr2 crystals grown in the vessel (glass tube) were studied. The crystal shape changed dramatically depending on the positions of condensation in the vessel, i.e., the crystal shape varied from an isometric polyhedron to columnar crystals with facets, and to a massive crystal without facets with a rise in the wall temperature. These results were interpreted in terms of the concentration gradient of the molecules in the vessel, surface roughening and/or surface melting of the crystals. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Photoconduction and transport mechanisms in polycrystalline zincphthalocyanine thin filmsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 5 2007S. Senthilarasu Abstract Zincphthalocyanine (ZnPc) thin films were prepared by the vacuum evaporation method under a pressure of 10 -6 mbar. The X-ray diffraction analysis of vacuum evaporated ZnPc films reveals that the structure of the films is polycrystalline in nature. The photoconduction properties have been studied in the wavelength range 400 ,800nm using suitable masks. The Photoconductivity of the films as a function of light intensity and applied voltage were studied and results were discussed in detail. The photoconduction was found to increase with higher light illumination and maximum at the band edge of the ZnPc thin film. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Growth and electrical properties of flash evaporated AgGaTe2 thin filmsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 2 2006B. H. Patel Abstract Thin films have been prepared by flash evaporation technique of a stoichiometric bulk of AgGaTe2 compound in vacuum and analysed using X-ray diffraction, transmission electron microscopy, selected area diffraction and energy dispersive analysis of X-rays. The effect of substrate temperature on the structural properties , grain size, film orientation, composition, and stoichiometry of the films have been studied. It was found that the polycrystalline, stoichiometric films of AgGaTe2 can be grown in the substrate temperature range of 473K < Ts < 573K. The influence of substrate temperature (Ts) on the electrical characteristics- Resistivity, Hall Mobility, Carrier concentration of AgGaTe2 thin films were studied. The electrical resistivity was found to decrease with increase in substrate temperature up to 573K and then increases. The variation of activation energy of AgGaTe2 thin films were also investigated. The implications are discussed. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Preparation and characterization of powders and crystals of Vn-xTixO2n-1 Magneli oxidesCRYSTAL RESEARCH AND TECHNOLOGY, Issue 10-11 2005D. Calestani Abstract Vn-xTixO2n-1 Magnéli phases have been synthesized under vacuum in powder form (n = 4, 0 , x , 0.4) and crystals (n = 4 and 5, x = 0.5 and 1.4, respectively), grown by chemical vapour transport in closed ampoules. TeCl4 and NH4Cl were used as transporting agents. Needle-shaped crystals as long as 200-300 micrometers or 2-3 mm were obtained when in presence of NH4Cl or TeCl4, respectively. The powder and crystal structures were examined by X-ray diffraction and the transport and magnetic characteristics were measured.. The powders resulted to be single-phase and the relevant composition was assumed to be equal to the nominal one. The overall stoichiometry of compounds, n, was determined from single crystal X-ray diffraction data. The Ti content, x, was deduced from the elementary cell volume, by applying the Végard law. Crystals were mainly untwinned and of good quality. The elementary cell of both, powders and crystals, was triclinic (P-1) and did not change with doping. DC electrical resistivity of the crystals was measured in a four-points (van der Pauw) configuration. DC magnetic susceptibility of the powders was measured in a SQUID magnetometer. The Ti doping was found to progressively smooth and finally to suppress the magnetic transitions occurring in the V4O7. The metal-insulator transitions observed in V4O7 and V5O9, at around 235 and 125 K respectively, were not observed in the doped crystals, thus indicating some significant change of the electronic structure of the V oxides. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Effect of substrate temperature on the properties of vacuum evaporated indium selenide thin filmsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 7 2005C. Viswanathan Abstract Thin films of InSe were obtained by thermal evaporation techniques on glass substrates maintained at various temperatures (Tsb = 30°, 400°C). X-ray diffraction analysis showed the occurrence of amorphous to polycrystalline transformation in the films deposited at higher substrate temperature (400°C). The polycrystalline films were found to have a hexagonal lattice. Compositions of these films have been characterized by EDAX and the surface analysis by scanning electron microscopy. Optical properties of the films, investigated by using spectrophotometer transmittance spectra in the wavelength range (300 , 1100 nm), were explained in terms of substrate temperatures. Films formed at room temperature showed an optical band gap (Egopt) 1.56 eV; where as the films formed at 400°C were found to have a Egopt of 1.92 eV. The increase in the value of Egopt with Tsb treatment is interpreted in terms of the density of states model as proposed by Mott and Davis. The analysis of current -Voltage characteristics, based on space charge limited currents (SCLC) measurements, confirms the exponential decrease of density of states from the conduction band edge towards the Fermi level for both the amorphous and polycrystalline films. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Pump-free and low-cost negative pressure sampling device for rapid sample loading in MCEELECTROPHORESIS, Issue 24 2009Hongmei Hu Abstract A pump-free and low-cost negative pressure sampling device for injecting well-defined non-biased sample plugs into the separation channel of MCE was developed. It was composed of a pipet bulb, a 3-way electromagnetic valve and a single voltage supply at constant voltage. A sub-atmospheric pressure was created by hand-pressing air out of the pipet bulb and retained in it by switching the 3-way electromagnetic valve at cutoff position. During the sample loading stage, the sub-atmospheric pressure in the pipet bulb was applied via a 3-way electromagnetic valve to the headspace of the sealed sample waste reservoir (SW). A pinched sample plug was formed at the channel intersection in less than 0.5,s. Once the 3-way electromagnetic valve was switched to connect SW to ambient atmosphere to release the vacuum in SW, electrophoresis separation was consequently activated under the electric potentials applied. Experimental results demonstrated the pump-free negative pressure sampling device worked well in a wide vacuum degree ranged from ,250 to ,30,mbar with a satisfactory analytical precision. The sample consumption for each cycle was calculated to be 51,12,nL under the sampling pressure. Theoretical deduction indicates that the volume of the pipet bulb can be further reduced to 1,mL, which is critical for minimizing the sampling device for MCE. [source] Regulation of GADD153 induced by mechanical stress in cardiomyocytesEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 11 2009W. P. Cheng Abstract Background, Growth arrest and DNA damage-inducible gene 153 (GADD153), an apoptosis regulated gene, increased during endoplasmic reticulum stress. However, the expression of GADD153 in cardiomyocytes under mechanical stress is little known. We aimed to investigate the regulation mechanism of GADD153 expression and apoptosis induced by mechanical stress in cardiomyocytes. Materials and methods, Aorta-caval shunt was performed in adult Sprague,Dawley rats to induce volume overload. Rat neonatal cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation, at 60 cycles min,1. Results, The increased ventricular dimension measured using echocardiography in the shunt group (n = 8) was reversed to normal by treatment with chaperon 4-phenylbutyric acid (PBA) (n = 8) at 500 mg kg,1 day,1 orally for 3 days. GADD153 protein and mRNA were up-regulated in the shunt group when compared with sham group (n = 8). Treatment with PBA reversed the protein of GADD153 to the baseline values. The TUNEL assay showed that PBA reduced the apoptosis induced by volume overload. Cyclic stretch significantly increased GADD153 protein and mRNA expression after 14 h of stretch. Addition of c-jun N-terminal kinase (JNK) inhibitor SP600125, JNK small interfering RNA and tumour necrosis factor-, (TNF-,) antibody 30 min before stretch, reduced the induction of GADD153 protein. Stretch increased, while GADD153-Mut plasmid, SP600125 and TNF-, antibody abolished the GADD153 promoter activity induced by stretch. GADD153 mediated apoptosis induced by stretch was reversed by GADD153 siRNA, GADD153-Mut plasmid and PBA. Conclusions, Mechanical stress enhanced apoptosis and GADD153 expression in cardiomyocytes. Treatment with PBA reversed both GADD153 expression and apoptosis induced by mechanical stress in cardiomyocytes. [source] A Dynamically Entangled Coordination Polymer: Synthesis, Structure, Luminescence, Single-Crystal-to-Single-Crystal Reversible Guest Inclusion and Structural TransformationEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 24 2010Arshad Aijaz Abstract A ZnII coordination polymer {[Zn2(cpa)2(bpy)]·3H2O}n (1) (cpa2, = 4-(methoxycarbonyl)benzoate and bpy = 4,4,-bipyridine) has been synthesized under solvothermal condition and structurally characterized. This coordination polymer has nanotubular threefold entangled (2D,3D) structure with embedded water molecules; the water molecules can be partially exchanged in reversible single-crystal-to-single-crystal (SC-SC) fashion by different solvent molecules like methanol, ethanol and acetone giving rise to {[Zn2(cpa)2(bpy)]·(0.5MeOH)·(2.5H2O)}n (2), {[Zn2(cpa)2(bpy)]·(0.5EtOH)·(0.5H2O)}n (3) and {[Zn2(cpa)2(bpy)]·(0.5Me2CO)·(H2O)}n (4). Inclusion of EtOH or MeOH leaves the size of the voids in the framework unaltered. Inclusion of acetone, however, is accompanied by shrinking of the voids in the framework. Heating of 1 at 100 °C under vacuum for 4 h affords the de-solvated compound, {Zn2(cpa)2(bpy)}n (1,). Single-crystal X-ray structure of 1, shows sliding of the individual nanotubular components expanding the overall framework. Thus, the coordination polymer exhibits dynamic motion of the molecular components in SC-SC fashion. All compounds were further characterized via IR spectroscopy, PXRD, elemental and TGA analysis. When 1 is placed in benzene at 100 °C for 2 days, compound {[Zn2(cpa)2(bpy)]·(2.5H2O)}n (5) is formed in a SC-SC fashion where coordination number of ZnII ion increases from four to five. Compound 1 also exhibits reversible guest-dependent photoluminescence properties. [source] Base-Induced Formation of Two Magnesium Metal-Organic Framework Compounds with a Bifunctional Tetratopic LigandEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 23 2008Pascal D. C. Dietzel Abstract Two coordination polymers constructed from magnesium and the tetratopic organic linker 2,5-dihydroxyterephthalic acid are reported, denominated CPO-26-Mg and CPO-27-Mg. The organic component carries two different types of protic functional groups. The degree of deprotonation of the organic component can be regulated by the amount of sodium hydroxide employed in the synthesis, thus determining which of the compounds forms. In CPO-26-Mg, only the carboxylic acid groups of the linker are deprotonated and take part in the construction of the three-dimensional framework. The structure is non-porous, and its topology is based on the PtS net. In CPO-27-Mg, both the carboxylic acid and the hydroxy groups are deprotonated and involved in the construction of a microporous three-dimensional framework which is based on a honeycomb motif containing large solvent-filled channels. The metal atoms are arranged in chiral chains along the intersection of the honeycomb and contain one water molecule in their coordination sphere, which allows for the creation of coordinatively unsaturated metal sites upon dehydration. CPO-27-Mg is a potentially useful lightweight adsorbent with a pore volume of 60,% of the total volume of the structure and an apparent Langmuir surface area of up to 1030 m2,g,1. Its thermal stability was investigated by thermogravimetry and variable-temperature powder X-ray diffraction, which shows framework degradation to commence at 160 °C in air, at 235 °C under nitrogen, and at 430 °C in a dynamic vacuum. Thermogravimetric dehydration and re-hydration experiments at miscellaneous temperatures indicate that it is possible to obtain open metal sites in CPO-27-Mg, but the water is more tightly bound in this material than in the previously reported isostructural nickel compound.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] Chelating Phosphane,Boranes as Hemilabile Ligands , Synthesis of[Mn(CO)3(,2 -H3B·dppm)][BArF4] and [Mn(CO)4(,1 -H3B·dppm)][BArF4]EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 20 2006Nicolas Merle Abstract Manganese complexes bearing the chelating phosphane,borane ligand H3B·dppm [dppm = bis(diphenylphosphanyl)methane] have been prepared. Addition of H3B·dppm to Mn(CO)5Br using Na[BArF4] as a halide-abstracting reagent affords [Mn(CO)3(,2 -H3B·dppm)][BArF4] (1). This reacts with CO to open the bidentate borane to afford [Mn(CO)4(,1 -H3B·dppm)][BArF4] (2) in which the borane is now bound in a monodentate manner. The CO addition is reversible, and placing 2 under vacuum (hours) regenerates 1 quantitatively, demonstrating that the chelating phosphane,boranes can act as hemilabile ligands. The complexes 1 and 2 have been fully characterised by NMR spectroscopy and X-ray crystallography. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Synthesis and Structure of the First Non-Metallocene TiIII Fluoride Complex LTiF2·2Me3SnCl Supported by a ,-Diketiminato LigandEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 3 2003Grigori B. Nikiforov Abstract The TiIII dichloride complex LTiCl2 (1) and the first non-metallocene TiIII fluoride complex LTiF2·2Me3SnCl (2) supported by the ,-diketiminato ligand 2-{[2-(diethylamino)ethyl]amino}-4-{[2-(diethylamino)ethyl]imino}pent-2-ene have been synthesized. Elemental analysis, mass spectrometry and X-ray structural analysis show that 1 is monomeric, neutral, and free of solvent and lithium salt. The complex adopts a pseudo-octahedral geometry with the two chlorine atoms arranged in trans position to each other. Compound 1 is soluble in common organic solvents and thermally surprisingly robust. Complex 2 was prepared using Me3SnF as a fluorinating agent. X-ray structural analysis revealed that complex 2 consists of the LTiF2 unit and two molecules of Me3SnCl coordinated through a fluorine bridge to the titanium center. The fluorine atoms in 2 are located in trans positions to each other and the geometry around the titanium atom is distorted octahedral. Elemental analysis and mass spectrometry proved that 2 releases the coordinated Me3SnCl under vacuum or during sublimation. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source] Fabrication and Microstructure of C/Cu Composites,ADVANCED ENGINEERING MATERIALS, Issue 6 2010Yiwen Liu C/Cu composites were prepared by a melting infiltration technique in vacuum. In order to improve the wettability between Cu and carbon fibers, Ti (8,wt.-%) and Cr (1,wt.-%) were added to the Cu alloy. Microstructures of the composites and interface between C and Cu were investigated by XRD, SEM, EDS and HRTEM. The results show that the Ti and Cr improved the wettability between Cu and CC preform and the infiltration ability of Cu into CC preform greatly. The prepared C/Cu composites are characterized as having good interface bonding and high density. In the process of infiltration, Ti and Cr concentrate on the boundary of carbon fiber. Formation of TiC results from the reaction of Ti and C between Cu and carbon fiber. [source] Multifunctional FeCo/TiN Multilayer Thin Films with Combined Magnetic and Protective Properties,ADVANCED ENGINEERING MATERIALS, Issue 12 2009Christian Klever Abstract Coatings with thicknesses ranging from a few nanometer up to several micrometer produced by physical vapor deposition (PVD) processes have been established in engineering technologies since the early 1980s. In particular, magnetron sputtered wear resistance coatings are industrially established and capable to enhance tool lifetimes significantly. However, in cases where optical inspection of a coating in use is not possible, an intrinsic sensor function of the film would be beneficial. Therefore, the development of wear resistant coatings with an integrated sensor functionality based on the insertion of a magnetoelastic ferromagnetic phase is suggested. In combination with appropriate read-out electronics such a film system would be ready for online monitoring of the coatings' actual state (e.g., strain, temperature, volume loss). This paper focuses on the development of wear resistance coatings which simultaneously supply beneficial mechanical properties as well as ferromagnetic properties optimized for online non-contact read-out applications. Multilayer coatings obtained through alternate stacking of magnetron sputtered TiN and FeCo layers with a nominal total thickness of 1000,nm were produced as a model system meeting the above conditions. The bilayer period was varied down to 2.6,nm while the individual layer thickness ratio tTiN/tFeCo was determined by the deposition rates and maintained constant at a value of about 3/1. The films were vacuum annealed ex situ in a static magnetic field subsequent to the deposition. The constitution of the as-deposited and annealed coatings as well as their mechanical (nanohardness, Young's modulus) and magnetic properties (magnetization hysteresis, frequency-dependent permeability) are described. Finally, the suitability of the coatings for the use in remote-interrogable wear sensor applications is briefly discussed. [source] The Effects of Casting Temperature on the Glass Formation of Zr-Based Metallic Glasses,ADVANCED ENGINEERING MATERIALS, Issue 12 2009Jie Mao Abstract The glass1-forming ability of two alloys, Zr64.9Al7.9Ni10.7Cu16.5 and Zr47Cu37.5Ag7.5Al8, prepared by arc-melting a mixture of Zr, Cu, Al, Ni and Ag elements is studied as a function of casting temperature. Other processing parameters such as the alloy melt mass, and the vacuum and injection pressures during the copper-mold-casting process are kept constant so just the influence of the casting temperature is considered. The casting temperature determines the characteristics of the liquid melt and the cooling rate. The glass-forming ability is discussed in terms of dissipation of pre-exiting, metastable local-ordering clusters that act as nucleation sites promoting crystallization, the cooling rate at high casting temperatures, and the presence of oxygen in the alloys, which is increased at high casting temperatures. It is found that the glass-forming ranges of alloys shrink as the glass-forming size approaches a critical value. The optimum temperatures are around 1450,K and 1550,K for Zr64.9Al7.9Ni10.7Cu16.5 and Zr47Cu37.5Ag7.5Al8 alloys respectively. The alloys were studied by XRD, TEM, oxygen-level determination, and DSC. [source] Shrinkage of initially very wet soil blocks, cores and clods from a range of European Andosol horizonsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2007F. Bartoli Summary In advanced stages of volcanic ash soil formation, when more clay is formed, soil porosity values and soil water retention capacities are large and the soils show pronounced shrinkage on drying. Soil shrinkage is a key issue in volcanic soil environments because it often occurs irreversibly when topsoils dry out after changes from permanent grassland or forest to agriculture. European Andosols have developed in a wide range of climatic conditions, leading to a wide range in intensity of both weathering and organo-mineral interactions. The question arises as to whether these differences affect their shrinkage properties. We aimed to identify common physically based shrinkage laws which could be derived from soil structure, the analysis of soil constituents, the selected sampling size and the drying procedure. We found that the final volumetric shrinkage of the initially field-wet (56,86% of total porosity) or capillary-wet (87,100% of total porosity) undisturbed soil samples was negatively related to initial bulk density and positively related to initial capillary porosity (volumetric soil water content of soil cores after capillary rise). These relationships were linear for the soil clods of 3,8 cm3, with final shrinkage ranging from 21.2 to 52.2%. For soil blocks of 240 cm3 and soil cores of 28.6 cm3 we found polynomial and exponential relationships, respectively, with thresholds separating shrinkage and nearly non-shrinkage domains, and larger shrinkage values for the soil cores than for the soil blocks. For a given sample size, shrinkage was more pronounced in the most weathered and most porous Andosol horizons, rich in Al-humus, than in the less weathered and less porous Andosol horizons, poor in Al-humus. The Bw horizons, being more weathered and more porous, shrank more than the Ah horizons. We showed that the structural approach combining drying kinetics under vacuum, soil water analysis and mercury porosimetry is useful for relating water loss and shrinkage to soil structure and its dynamics. We also found that the more shrinkage that occurred in the Andosol horizon, the more pronounced was its irreversible mechanical change. [source] The dynamic voltage/current characteristics of vacuum arcs after breakdown at currents in the lower kHz-rangeEUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 5 2002N. Hardt A test set-up is presented which is able to measure the arc voltage of vacuum interrupters after breakdown with currents in the lower kHz-range. Arc voltage measurements from this set-up are presented. The obtained dynamic voltage/current characteristics are discussed and compared to the known voltage current characteristic of a power frequency arc in vacuum. A simple vacuum arc model is presented describing the voltage current characteristic. The model is applied to assess the energy dissipation in the arc. [source] A new contact design based on a quadrupolar axial magnetic field and its characteristicsEUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 2 2000H. Fink Axial magnetic field (AMF) contacts are applied within vacuum interrupters especially in case of high short-circuit current. In this paper a new AMF contact design based on a quadrupolar field arrangement and its characteristics are presented. In the first part the basic principle of the new contact design is introduced. This is followed by three-dimensional field simulations performed with the aid of a Finite-Element-program. The magnitude of the axial magnetic flux density, the phase-shift between current and magnetic flux density, and the current flow within the contact plate are investigated during arcing. The impact of quadrupolar AMF on the arc behaviour during the high current phase is analysed by high-speed films and pictures of the contact surface after arcing. The interruption performance of the principle has been validated by short-circuit tests up to 12 kV/63 kA. [source] |