Vaccine Development (vaccine + development)

Distribution by Scientific Domains


Selected Abstracts


Role of Potential Immune Targets in Atherosclerosis for Vaccine Development

PREVENTIVE CARDIOLOGY, Issue 4 2008
Nandini Venkatesan PhD
First page of article [source]


Antigenic cross-reactivity among Porphyromonas gingivalis serotypes

MOLECULAR ORAL MICROBIOLOGY, Issue 3 2000
Q. Fan
The goal of our research program is to develop a Porphyromonas gingivalis vaccine. Vaccine development requires identification of antigenic components shared by the many clonal types of P. gingivalis. The purpose of the present study was to evaluate the extent and nature of antigenic cross-reactivity among serotypes of P. gingivalis and to identify shared antigenic components. Strains selected to represent serotypes A,D were 33277, A7A1-28 W50 and 381, respectively. Using intact cells, antibodies were raised in rabbits. Titers were assessed by enzyme-linked immunosorbent assay (ELISA) using intact cells as antigen, Western blots were prepared and biologic activity was measured as opsonization (chemiluminescence expressed as mV) and enhancement of phagocytosis and killing by polymorphonuclear leukocytes. Extensive cross-reactivity that varied greatly among serotypes was observed by ELISA. The Western blots showed an even greater extent of cross-reactivity, with shared protein components at approximately 140, 130, 37, 32 and 28 kDa and a shared variable molecular mass smear considered to be lipopolysaccharide and other carbohydrate. Additional protein components at 110, 85, 35 and 20 kDa appeared to be shared by some but not all serotypes. In the functional assays, strains 33277 and 381 were equally well opsonized by anti-33277 and anti-381 (500,650 mV) but opsonized to a much lesser extent by anti-A7A1-28 and anti-W50 (roughly 125 mV and 350 mV respectively). A7A1-28 and W50 were opsonized by all four immune sera almost equally but to a much lower extent (roughly 400 mV and 250 mV respectively). Enhancement of phagocytosis and killing in the presence of active complement mirrored opsonization with the exception that 381 was reasonably well opsonized by anti-A7A1-28 (400 mV) and anti-W50 (350 mV), but poorly killed. The protein components at 140, 130, 37 and 28 kDa shared by all of the four serotypes appear to have potential as vaccine candidate antigens. [source]


Extensive HLA class I allele promiscuity among viral CTL epitopes

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2007
Nicole Frahm
Abstract Promiscuous binding of T helper epitopes to MHC class II molecules has been well established, but few examples of promiscuous class I-restricted epitopes exist. To address the extent of promiscuity of HLA class I peptides, responses to 242 well-defined viral epitopes were tested in 100 subjects regardless of the individuals' HLA type. Surprisingly, half of all detected responses were seen in the absence of the originally reported restricting HLA class I allele, and only 3% of epitopes were recognized exclusively in the presence of their original allele. Functional assays confirmed the frequent recognition of HLA class I-restricted T cell epitopes on several alternative alleles across HLA class I supertypes and encoded on different class I loci. These data have significant implications for the understanding of MHC class I-restricted antigen presentation and vaccine development. [source]


High epitope density in a single protein molecule significantly enhances antigenicity as well as immunogenicity: a novel strategy for modern vaccine development and a preliminary investigation about B,cell discrimination of monomeric proteins

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2005
Wanli Liu
Abstract Although early studies have shown a close correlation between epitope density and epitope-specific humoral immune responses, few attempts have been made to quantitatively compare the antigenic and immunogenic differences between protein molecules bearing low or high degrees of epitope density, nor have studies quantitatively investigated the mechanism of B,cell discrimination of monomeric antigens. In this study, we prepared glutathione S-transferase (GST) fusion proteins bearing various copies of the M2e epitope from the influenza virus M2,protein [GST-(M2e)8, GST-(M2e)4 and GST-(M2e)1], which were used to detect and compare the real-time kinetic binding with M2e-specific mAb by surface plasma resonance. Our data show clearly that fusion proteins bearing higher M2e epitope density resulted in higher average avidity for M2e-specific mAb. Furthermore, it was observed that fusion proteins bearing high M2e epitope density could induce polyclonal antibodies (pAb) with enhanced an average affinity constant (KA) for M2e epitope peptide compared to fusion proteins bearing low epitope density. The average KA of pAb induced by GST-(M2e)8 (3.08 × 108,M,1 or 9.96 × 108,M,1) was up to two orders of magnitude greater than the average KA of pAb induced by GST-(M2e)1 (2.00 × 106,M,1 or 3.43 × 106,M,1). Thus, the data presented here demonstrate that high epitope density in a single protein molecule significantly enhances antigenicity and immunogenicity. These findings enrich our knowledge of how epitope density might relate to the recognition, activation and antibody production processes of epitope-specific immature B,cells. [source]


Cross-presentation of a human tumor antigen delivered to dendritic cells by HSV VP22-mediated protein translocation

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2004
Arvind Chhabra
Abstract Dendritic cells (DC) capture antigens from apoptotic and/or necrotic tumor cells and cross-present them to T,cells, and various ways of delivering tumor antigens to DC in vitro and in vivo are being pursued. Since fusions of antigenic proteins with the HSV integument protein VP22 are capable of intercellular trafficking, this approach has been exploited for delivery of antigens to antigen-presenting cells. Adenoviral vectors were used to express the tumor-associated-but-self-antigen MART-1 fused to HSV VP22 in MART-1-negative A375 melanoma cells and in DC. When expressed in A375 cells and allowed to spread to DC across a transwell barrier, the VP22-MART-1 fusion protein localized to both early and late endosomal structures of the DC. The DC loaded with the VP22-MART-1 fusion by intercellular trafficking efficiently presented the MART-127,35 epitope to MART-127,35 -specific CTL. Furthermore, transloaded DC were capable of expanding the population of MART-127,35 -specific CTL. Thus, a tumor antigen acquired by intercellular trafficking can be cross-presented by DC. This experimental approach should therefore be useful not only for studying the mechanism of cross-presentation but also for vaccine development. [source]


New approaches to bacterial vaccine development

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 2-3 2003
Article first published online: 9 JAN 200
No abstract is available for this article. [source]


Salmonella vaccines for use in humans: present and future perspectives

FEMS MICROBIOLOGY REVIEWS, Issue 4 2002
Helen S Garmory
Abstract In recent years there has been significant progress in the development of attenuated Salmonella enterica serovar Typhi strains as candidate typhoid fever vaccines. In clinical trials these vaccines have been shown to be well tolerated and immunogenic. For example, the attenuated S. enterica var. Typhi strains CVD 908- htrA (aroC aroD htrA), Ty800 (phoPphoQ) and ,4073 (cya crp cdt) are all promising candidate typhoid vaccines. In addition, clinical trials have demonstrated that S. enterica var. Typhi vaccines expressing heterologous antigens, such as the tetanus toxin fragment C, can induce immunity to the expressed antigens in human volunteers. In many cases, the problems associated with expression of antigens in Salmonella have been successfully addressed and the future of Salmonella vaccine development is very promising. [source]


Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans

FEMS YEAST RESEARCH, Issue 4 2007
Richard A. Eigenheer
Abstract Extracellular proteins of Cryptococcus neoformans are involved in the pathogenesis of cryptococcosis, and some are immunoreactive antigens that may potentially serve as candidates for vaccine development. To further study the extracellular proteome of the human fungal pathogen Cry. neoformans, we conducted a proteomic analysis of secreted and cell wall-bound proteins with an acapsular strain of Cry. neoformans. Proteins were identified from both intact cells and cell walls. In both cases, extracellular proteins were removed with trypsin or ,-glucanase, and then all proteins/peptides were purified by solid-phase extraction, spin dialysis, and HPLC, and identified by liquid chromatography,mass spectrometry. This study identified 29 extracellular proteins with a predicted N-terminal signal sequence and also a predicted glycosylphosphatidylinositol anchor motif in more than half. Among the novel proteins identified were five glycosylphosphatidylinositol-anchored proteins with extensive Ser/Thr-rich regions but no apparent functional domains, a glycosylphosphatidylinositol-anchored aspartic protease, and a metalloprotease with structural similarity to an elastinolytic metalloprotease of Aspergillus fumigatus. This study suggests that Cry. neoformans has the machinery required to target glycosylphosphatidylinositol-anchored proteins to the cell wall, and it confirms the extracellular proteolytic ability of Cry. neoformans. [source]


The development of effector and memory T cells in cutaneous leishmaniasis: the implications for vaccine development

IMMUNOLOGICAL REVIEWS, Issue 1 2004
Phillip Scott
Summary:,Leishmania major infections induce the development of a CD4+ T-helper 1 (Th1) response that not only controls the primary infection but also results in life-long immunity to reinfection. How that immunity is maintained is unknown, although because of the existence of infection-induced immunity, there has been an assumption that the development of a vaccine against leishmaniasis would be relatively easy. This has turned out not to be the case. One problem has been the finding that a large part of the immunity induced by a primary infection depends upon the presence of persistent parasites. Nevertheless, there are ample situations where immunologic memory persists without the continued presence of antigen, providing the prospect that a non-live vaccine for leishmaniasis can be developed. To do so will require an understanding of the events involved in the development of an effective protective T-cell response and, more importantly, an understanding of how to maintain that response. Here, we review work from our laboratory, describing how Th1 cells develop in L. major -infected mice, the nature of the memory T cells that provide protection to reinfection, and how that information may be utilized in the development of vaccines. [source]


Induction of potent cellular immune response in mice by hepatitis C virus NS3 protein with double-stranded RNA

IMMUNOLOGY, Issue 1 2007
Bo Jin
Summary Double-stranded RNA is produced during virus replication and, together with the viral antigen, is responsible for inducing host antivirus immunity. The hepatitis C virus (HCV) non-structural protein-3 (NS3) has been implicated in the immune evasion of HCV, and is one of the prime targets for inducing immunity against HCV infection. Mice were immunized with recombinant NS3 protein (rNS3) and poly (I:C) emulsified in Montanide ISA 720 (M720). Cytokine production was assayed by enzyme-linked immunospot assay, and CD4+ IFN-,+ T helper (Th) cells or CD8+ IFN-,+ cytotoxic T lymphocytes were detected by flow cytometry. Anti-NS3 titre and immunoglobulin G2a (IgG2a) and IgG1 levels were monitored by enzyme-linked immunosorbent assay. Administration of rNS3 formulated in poly (I:C) and M720 induced anti-NS3 titres with a predominantly IgG2a isotype comparable to those induced by rNS3 in CpG-ODN and M720. The cytokine profiles showed that this formulation induced a Th1-biased immune response with several-fold more interferon-, (IFN-,)-producing cells than interleukin-4-producing cells. In contrast, rNS3 in M720 induced a Th2-biased immune response. The frequency of IFN-,-producing CD4+ and CD8+ cells induced by rNS3 in poly (I:C) and M720 was significantly higher than that induced by rNS3, rNS3 in M720, or rNS3 in poly (I:C), and was comparable to that induced by rNS3 in CpG-ODN with M720. The antigen-specific CD8+ T-cell immune response persisted for up to 7 months after immunization. In conclusion, poly (I:C) with rNS3 in M720 can elicit a strong and persistent Th1-biased immune response and a cytotoxic T-lymphocyte response through cross-priming in mice. This study highlighted a promising formulation for inducing an efficient cellular immune response against HCV that has potential for HCV vaccine development. [source]


Rhesus macaque antibody molecules: sequences and heterogeneity of alpha and gamma constant regions

IMMUNOLOGY, Issue 1 2004
Franco Scinicariello
Summary Rhesus macaques (Macaca mulatta) are extensively used in vaccine development. Macaques infected with simian immunodeficiency viruses (SIV) or simian-human immunodeficiency viruses (SHIV) are the best animal model currently available for acquired-immune-deficiency-syndrome-related studies. Recent results emphasize the importance of antibody responses in controlling HIV and SIV infection. Despite the increasing attention placed on humoral immunity in these models, very limited information is available on rhesus macaque antibody molecules. Therefore, we sequenced, cloned and characterized immunoglobulin gamma (IGHG) and alpha (IGHA) chain constant region genes from rhesus macaques of Indian and Chinese origin. Although it is currently thought that rhesus macaques express three IgG subclasses, we identified four IGHG genes, which were designated IGHG1, IGHG2, IGHG3 and IGHG4 on the basis of sequence similarities with the four human genes encoding the IgG1, IgG2, IgG3 and IgG4 subclasses. The four genes were expressed at least at the messenger RNA level, as demonstrated by real-time reverse transcription polymerase chain reaction (RT-PCR). The level of intraspecies heterogeneity was very high for IGHA genes, whereas IGHG genes were remarkably similar in all animals examined. However, single amino acid substitutions were present in IGHG2 and IGHG4 genes, indicating the presence of IgG polymorphism possibly resulting in the expression of different allotypes. Two IgA alleles were identified in several animals and RT-PCR showed that both alleles may be expressed. Presence of immunoglobulin gene polymorphism appears to reflect the unusually high levels of intraspecies heterogeneity already demonstrated for major histocompatibility complex genes in this non-human primate species. [source]


MF59® -adjuvanted vaccines for seasonal and pandemic influenza prophylaxis

INFLUENZA AND OTHER RESPIRATORY VIRUSES, Issue 6 2008
Angelika Banzhoff
Abstract, Influenza is a major cause of worldwide morbidity and mortality through frequent seasonal epidemics and infrequent pandemics. Morbidity and mortality rates from seasonal influenza are highest in the most frail, such as the elderly, those with underlying chronic conditions and very young children. Antigenic mismatch between strains recommended for vaccine formulation and circulating viruses can further reduce vaccine efficacy in these populations. Seasonal influenza vaccines with enhanced, cross-reactive immunogenicity are needed to address these problems and can confer a better immune protection, particularly in seasons were antigenic mismatch occurs. A related issue for vaccine development is the growing threat of pandemic influenza caused by H5N1 avian strains. Vaccines against strains with pandemic potential offer the best approach for reducing the potential impact of a pandemic. However, current non-adjuvanted pre-pandemic vaccines offer suboptimal immunogenicity against H5N1. For both seasonal and pre-pandemic vaccines, the addition of adjuvants may be the best approach for providing enhanced cross-reactive immunogenicity. MF59®, the first oil-in-water emulsion licensed as an adjuvant for human use, can enhance vaccine immune responses through multiple mechanisms. A trivalent MF59-adjuvanted seasonal influenza vaccine (Fluad®) has shown to induce significantly higher immune responses to influenza vaccination in the elderly, compared with non-adjuvanted vaccines, and to provide cross-reactive immunity against divergent influenza strains. Similar results have been generated with a MF59-adjuvanted H5N1 pre-pandemic vaccine, which showed higher and broader immunogenicity compared with non-adjuvanted pre-pandemic vaccines. [source]


Workshop on Immunizations in Older Adults: Identifying Future Research Agendas

JOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 4 2010
Kevin P. High MD
Goals for immunization in older adults may differ from those in young adults and children, in whom complete prevention of disease is the objective. Often, reduced hospitalization and death but also averting exacerbation of underlying chronic illness, functional decline, and frailty are important goals in the older age group. Because of the effect of age on dendritic cell function, T cell-mediated immune suppression, reduced proliferative capacity of T cells, and other immune responses, the efficacy of vaccines often wanes with advanced age. This article summarizes the discussion and proceedings of a workshop organized by the Association of Specialty Professors, the Infectious Diseases Society of America, the American Geriatrics Society, the National Institute on Aging, and the National Institute of Allergy and Infectious Diseases. Leading researchers and clinicians in the fields of immunology, epidemiology, infectious diseases, geriatrics, and gerontology reviewed the current status of vaccines in older adults, identified knowledge gaps, and suggest priority areas for future research. The goal of the workshop was to identify what is known about immunizations (efficacy, effect, and current schedule) in older adults and to recommend priorities for future research. Investigation in the areas identified has the potential to enhance understanding of the immune process in aging individuals, inform vaccine development, and lead to more-effective strategies to reduce the risk of vaccine-preventable illness in older adults. [source]


Interferon regulatory factor-1 acts as a powerful adjuvant in tat DNA based vaccination,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2010
Arianna Castaldello
Genetic vaccines are safe cost-effective approaches to immunization but DNA immunization is an inefficient process. There is, therefore, a pressing need for adjuvants capable of enhancing the immunogenicity and effectiveness of these vaccines. This is particularly important for diseases for which successful vaccines are still lacking, such as cancer and infectious diseases including HIV-1/AIDS. Here we report an approach to enhance the immunogenicity of DNA vaccines involving the use of transcription factors of the Interferon regulatory factor (IRF) family, specifically IRF-1, IRF-3, and IRF-7 using the tat gene as model antigen. Balb/c mice were immunized by three intramuscular inoculations, using a DNA prime-protein boost protocol, with a DNA encoding tat of HIV-1 and the indicated IRFs and immune responses were compared to those induced by vaccination with tat DNA alone. In vivo administration of plasmid DNA encoding IRF-1, or a mutated version of IRF-1 deleted of the DNA-binding domain, enhanced Tat-specific immune responses and shifted them towards a predominant T helper 1-type immune response with increased IFN-, production and cytotoxic T lymphocytes responses. Conversely, the use of IRF-3 or IRF-7 did not affect the tat -induced responses. These findings define IRF-1 and its mutated form as efficacious T helper 1-inducing adjuvants in the context of tat- based vaccination and also providing a new promising candidate for genetic vaccine development. J. Cell. Physiol. 224: 702,709, 2010. © 2010 Wiley-Liss, Inc. [source]


Emergence and diversity of different HIV-1 subtypes in South Africa, 2000,2001

JOURNAL OF MEDICAL VIROLOGY, Issue 11 2009
G.B. Jacobs
Abstract HIV-1 is a major health problem in South Africa with an average prevalence rate of 29.1% in pregnant women and between 4.9 and 6.1 million people infected. Using env gp120 V3 serotyping and genotyping techniques 410 patient samples were investigated. Most of the samples were obtained from different clinics in the greater Cape Town area of the Western Cape Province in South Africa. These included an academic hospital, state and private clinics, an informal settlement, sex worker cohorts, and the blood transfusion services. RNA was extracted from plasma samples followed by RT-PCR and sequencing of the env gp120 V3 region. Sequence fragments were assembled using Sequencher V4.7 and subsequently codon aligned. Distance calculation, tree construction methods, and bootstrap analysis were implemented using MEGA version 4.0. Viral load measurements indicated that HIV-1 RNA levels from 74 samples were below the assay detection limit. Three hundred thirty-six samples were used for env PCR and sequencing and 320 were assigned to subtypes. The majority of the sequences were subtyped as C (n,=,285, 89.0%). Other subtypes detected were subtype A (n,=,10, 3.1%); subtype B (n,=,22, 6.8%); one each of subtypes F1, G, U, and a CH recombinant. Whether this diversity will have major implications for HIV-1 evolution and vaccine development in this region remains undetermined. J. Med. Virol. 81:1852,1859, 2009. © 2009 Wiley-Liss, Inc. [source]


Dichotomy in cross-clade reactivity and neutralization by HIV-1 sera: Implications for active and passive immunotherapy,

JOURNAL OF MEDICAL VIROLOGY, Issue 2 2005
Lisa A. Cavacini
Abstract The identification of broadly reactive and cross-clade neutralizing antibodies will facilitate the development of a more universally effective vaccine for human immunodeficiency virus (HIV). Antibodies in sera from individuals infected with Clade B HIV bind native primary viral isolates, and virus binding correlates with neutralization and stable clinical disease. In this study, we quantified cross-clade antibody reactivity and neutralization by Clades B and C sera. Primary viral isolates were captured by serum IgG bound to anti-human IgG and quantitated as p24 released by lysis of captured virus. Neutralization was determined using PHA-stimulated PBMC. Clade B antibodies reacted more frequently with Clade B R5 virus, but positive sera captured quantitatively more X4 virus than R5 and R5X4 virus. Clade B sera reacted less frequently and captured less Clade C virus than Clade B virus. Antibodies in Clade C sera captured Clades B and C isolates with equal frequency and quantity. There was no difference in neutralization of Clade B virus by either group of sera; however, Clade C sera neutralized Clade C virus, whereas Clade B sera were ineffective against Clade C virus. Thus, there are distinct differences in cross-clade reactivity of and neutralization by antibodies induced in response to Clade C infection compared to Clade B infection. Understanding antibody responses to native virions after Clade C infection and cross clade antibody behavior has implications for understanding pathogenesis and vaccine development. J. Med. Virol. 76:146,152, 2005. © 2005 Wiley-Liss, Inc. [source]


Determination of HIV-1 subtypes (A,D, F, G, CRF01_AE) by PCR in the transmembrane region (gp41) with novel primers

JOURNAL OF MEDICAL VIROLOGY, Issue 1 2005
Fumihiro Yagyu
Abstract HIV-1 has a huge genetic diversity. So far, nine subtypes have been isolated, namely, subtypes A, B, C, D, F, G, H, J, and K. Epidemiological study provides information which may help in the development of HIV-1 prevention programs or health policies. In the future, subtyping may also be critical for vaccine development, and an effective anti-viral drug will need to be effective for different subtypes of HIV virus. The analysis of the nucleotide sequence of the v3 region is considered the most reliable method for determining the HIV-1 subtype. However, the procedures for determining the v3 sequences are complicated and time consuming, requiring expensive reagents, equipment, and well-trained personnel. The polymerase chain reaction (PCR) method using subtype-specific primers for HIV-1 subtyping is easier and faster. The objective of this study was to develop subtype-specific primers for subtyping PCR. The specific primers were designed for subtypes A, B, C, D, F, G, and CRF01_AE, and these primers could be applied to assay for various HIV-1 subtypes in the clinical samples. The specific primers were designed for each subtypes in the gp41 region. The result of PCR was compared with the subtypes which was determined by the v3 sequence. The results of subtyping by PCR using the newly designed primers could detect 29 of 33 patients tested, and all matched those obtained by nucleotide sequencing of the env v3 region except for three subjects, which were differentiated as CRF02_AG. The newly designed primers functioned accurately and conclusively. In comparison with PCR as a method for the determination of subtypes, sequence analysis requires better-trained personnel, more expensive reagents, and more equipment and time. J. Med. Virol. 76:16,23, 2005. © 2005 Wiley-Liss, Inc. [source]


Detection and genotyping of human papillomavirus in cervical samples from Italian patients

JOURNAL OF MEDICAL VIROLOGY, Issue 4 2005
M.A. De Francesco
Abstract Human papillomaviruses (HPVs) are etiological agents of cervical cancer. In order to assess the epidemiological incidence and frequency of different HPV types, we applied a polymerase chain reaction (PCR)-direct sequencing approach based on the use of MY09/MY11 primers as compared to Hybrid Capture assay. Cervical samples were taken from 1,500 women, both with normal and abnormal cytological smears, and we found an incidence of 6.6% of HPV infection in Brescia. Overall, 97 samples tested HPV-positive, yielding 18 HPV types. The four most frequent HPV types were: HPV 16, -31, -6, and -58. This approach could be used in ordinary laboratory settings for quick and reliable typing of known and novel HPVs from clinical specimens and it could also be applied to anti-cancer vaccine development. J. Med. Virol. 75:588,592, 2005. © 2005 Wiley-Liss, Inc. [source]


Synthetic peptide vaccine development: measurement of polyclonal antibody affinity and cross-reactivity using a new peptide capture and release system for surface plasmon resonance spectroscopy

JOURNAL OF MOLECULAR RECOGNITION, Issue 6 2004
Paul J. Cachia
Abstract A method has been developed for measurement of antibody affinity and cross-reactivity by surface plasmon resonance spectroscopy using the EK-coil heterodimeric coiled-coil peptide capture system. This system allows for reversible capture of synthetic peptide ligands on a biosensor chip surface, with the advantage that multiple antibody-antigen interactions can be analyzed using a single biosensor chip. This method has proven useful in the development of a synthetic peptide anti- Pseudomonas aeruginosa (PA) vaccine. Synthetic peptide ligands corresponding to the receptor binding domains of pilin from four strains of PA were conjugated to the E-coil strand of the heterodimeric coiled-coil domain and individually captured on the biosensor chip through dimerization with the immobilized K-coil strand. Polyclonal rabbit IgG raised against pilin epitopes was injected over the sensor chip surface for kinetic analysis of the antigen-antibody interaction. The kinetic rate constants, k(on) and k(off), and equilibrium association and dissociation constants, KA and KD, were calculated. Antibody affinities ranged from 1.14,×,10,9 to 1.60,×,10,5,M. The results suggest that the carrier protein and adjuvant used during immunization make a dramatic difference in antibody affinity and cross-reactivity. Antibodies raised against the PA strain K pilin epitope conjugated to keyhole limpet haemocyanin using Freund's adjuvant system were more broadly cross-reactive than antibodies raised against the same epitope conjugated to tetanus toxoid using Adjuvax adjuvant. The method described here is useful for detailed characterization of the interaction of polyclonal antibodies with a panel of synthetic peptide ligands with the objective of obtaining high affinity and cross-reactive antibodies in vaccine development. Copyright © 2004 John Wiley & Sons, Ltd. [source]


The Global Governance of Communicable Diseases: The Case for Vaccine R&D

LAW & POLICY, Issue 1 2005
DANIELE ARCHIBUGI
Fighting communicable diseases such HIV/AIDS, tuberculosis (TB, and malaria has become a global endeavor, with international health authorities urging the development of effective vaccines for the eradication of these global pandemics. Yet, despite the acknowledged urgency, and given the feasibility of effective vaccine development, public and private research efforts have failed to address a response adequate to the magnitude of the crisis. Members of the academic community suggest bridging this gap by devising research pull mechanisms capable of stimulating private investments, confident that competition-based market devices are more effective than public intervention in shaping scientific breakthroughs. With reference to the economics of innovation, the paper argues that, whilst such an approach would lead to a socially suboptimal production of knowledge, direct public intervention in vaccine R&D activities would represent a far more socially desirable policy option. In recognition of the current financial and political fatigue affecting the international community towards communicable disease control, the paper resorts to the theories of global public goods (GPGs) to provide governments, both in the North and in the South, with a powerful rationale for committing to a cooperative approach for vaccine R&D. The paper encourages the creation of a Global Health Research Fund to manage such exercise and proposes enshrining countries' commitments into an International Health Treaty. The paper ends by providing a number of policy recommendations. [source]


Changes in impact of HLA class I allele expression on HIV-1 plasma virus loads at a population level over time

MICROBIOLOGY AND IMMUNOLOGY, Issue 4 2010
Michiko Koga
ABSTRACT HLA class I allele types have differential impacts on the level of the pVL and outcome of HIV-1 infection. While accumulations of CTL escape mutations at population levels have been reported, their actual impact on the level of the pVL remains unknown. In this study HLA class I types from 141 untreated, chronically HIV-1 infected Japanese patients diagnosed from 1995,2007 were determined, and the associations between expression of individual HLA alleles and level of pVL analyzed. It was found that the Japanese population has an extremely narrow HLA distribution compared to other ethnic groups, which may facilitate accumulation of CTL escape mutations at the population level. Moreover while they uniquely lack the most protective HLA-B27/B57, they commonly express the alleles that are protective in Caucasians (A11:10.4%, A26:11.55%, B51:8.6% and Cw14:12.7%). Cross-sectional analyses revealed no significant associations between expression of individual alleles and the level of the pVL. The patients were then stratified by the date of HIV diagnosis and the analyses repeated. It was found that, before 2001, B51+ individuals displayed significantly lower pVL than the other patients (median: 5150 vs. 18 000 RNA copies/ml, P= 0.048); however thereafter this protective effect waned and disappeared, whereas no changes were observed for any other alleles over time. These results indicate that, at a population level, some HLA alleles have been losing their beneficial effects against HIV disease progression over time, thereby possibly posing a significant challenge for HIV vaccine development. However such detrimental effects may be limited to particular HLA class I alleles. [source]


Domains of group A streptococcal M protein that confer resistance to phagocytosis, opsonization and protection: implications for vaccine development

MOLECULAR MICROBIOLOGY, Issue 1 2006
Jason D. McArthur
Summary Streptococcus pyogenes (group A streptococcus) colonizes skin and throat tissues resulting in a range of benign and serious human diseases. Opsonization and phagocytosis are important defence mechanisms employed by the host to destroy group A streptococci. Antisera against the cell-surface M protein, of which over 150 different types have been identified, are opsonic and contribute to disease protection. In this issue of Molecular Microbiology, Sandin and colleagues have comprehensively analysed the regions of M5 protein that contribute to phagocytosis resistance and opsonization. Human plasma proteins bound to M5 protein B- and C-repeats were shown to block opsonization, an observation that needs to be carefully considered for the development of M protein-derived vaccines. While safe and efficacious human group A streptococcal vaccines are not commercially available, candidate M protein-derived vaccines have shown promise in murine vaccine models and a recent phase 1 human clinical trial. [source]


Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti

MOLECULAR MICROBIOLOGY, Issue 3 2002
Alexander S. Pym
Summary Although large human populations have been safely immunized against tuberculosis with two live vaccines, Mycobacterium bovis BCG or Mycobacterium microti, the vole bacillus, the molecular basis for the avirulence of these vaccine strains remains unknown. Comparative genomics has identified a series of chromosomal deletions common to both virulent and avirulent species but only a single locus, RD1, that has been deleted from M. bovis BCG and M. microti. Restoration of RD1, by gene knock-in, resulted in a marked change in colonial morphology towards that of virulent tubercle bacilli. Three RD1-encoded proteins were localized in the cell wall, and two of them, the immunodominant T-cell antigens ESAT-6 and CFP-10, were also found in culture supernatants. The BCG::RD1 and M. microti::RD1 knock-ins grew more vigorously than controls in immunodeficient mice, inducing extensive splenomegaly and granuloma formation. Increased persistence and partial reversal of attenuation were observed when immunocompetent mice were infected with the BCG::RD1 knock-in, whereas BCG controls were cleared. Knocking-in five other RD loci did not affect the virulence of BCG. This study describes a genetic lesion that contributes to safety and opens new avenues for vaccine development. [source]


Identification and characterization of B-cell epitopes of a 53-kDa outer membrane protein from Porphyromonas gingivalis

MOLECULAR ORAL MICROBIOLOGY, Issue 2 2001
K. Oyaizu
We have previously reported that Porphyromonas gingivalis FDC 381 possesses a 53-kDa protein antigen (Ag53) on its outer membrane that evokes a strong humoral immune response in many patients with periodontal disease and that the humoral immune responses to Ag53 differ greatly among patients. To understand how the individual humoral immune system against Ag53 was determined, the regions of Ag53 recognized by specific antibody (B-cell epitopes) and dominant subclasses of serum immunoglobulin G (IgG) against major B-cell epitopes were examined by enzyme-linked immunosorbent assay. This study used sera from six patients with periodontitis, which all reacted strongly with sonic extracts of P. gingivalis 381 and with purified Ag53, and sera from six periodontally healthy children, which did not react with either sonic extracts of P. gingivalis 381 or Ag53. The epitopes were identified using synthetic 5-residue overlapping decapeptides covering the entire Ag53. Thirteen of 89 synthetic decapeptides showed a strong reaction with sera from the periodontal patients, but no reaction with those from the healthy children. Four peptides of 13 exerted different immune responses among patients. Furthermore, restriction analyses of the highly antigenic regions revealed that three sequences, RAAIRAS, YYLQ and MSPARR, were identified as major B-cell epitopes. Additionally, these epitopes were recognized mainly by the IgG2 isotype. These data suggest that the difference of B-cell epitopes might influence individual differences in antibody titer against Ag53 and also that the epitopes recognized commonly by multiple antibodies are quite valuable for peptide vaccine development against P. gingivalis infection. [source]


Strategies for development of vaccines for control of ixodid tick species

PARASITE IMMUNOLOGY, Issue 7 2006
J. DE LA FUENTE
SUMMARY Ticks are distributed worldwide and impact human and animal health, as well as food animal production. Control of ticks has been primarily by application of acaricides, which has resulted in selection of resistant ticks and environmental pollution. Vaccines have been shown to be a feasible tick control method that offers a cost-effective, environmentally friendly alternative to chemical control. However, identification of tick-protective antigens remains the limiting step in vaccine development. Tick antigens exposed naturally to the host during tick feeding and those concealed have both shown promise as candidate vaccine antigens. Development of vaccines against multiple tick species may be possible using highly conserved tick-protective antigens or by antigens showing immune cross-reaction to different tick species. Vaccines made from a combination of key protective antigens may greatly enhance vaccine efficacy. Preliminary studies have suggested the possibility of vaccine strategies directed toward both tick control and the blocking of pathogen transmission. Characterization of the tick genomes will have a great impact on the discovery of new protective antigens. The future of research directed toward tick vaccine development is exciting because of new and emerging technologies for gene discovery, and vaccine formulation and delivery. [source]


Acute lower respiratory tract infections by human metapneumovirus in children in Southwest China: A 2-year study

PEDIATRIC PULMONOLOGY, Issue 8 2010
Xin Chen MD
Abstract Human metapneumovirus (hMPV) has been reported to cause both upper and lower respiratory tract diseases in susceptible populations, particularly in children and the elderly. In this study, we describe a hospital-based epidemiological study of hMPV in patients presenting to a children's hospital and show the demographic and clinical characteristics associated with hMPV infection in China, retrospectively. Specimens were collected over a 2-year period from children hospitalized with acute lower respiratory tract infections (ALRTI) and analyzed for the presence of hMPV using real-time RT-PCR assays. The presence of hMPV was detected in 227 (25.9%) of the 878 children studied and may circulate year-round in the area, peaking during the winter,spring season. Younger children (aged less than 6 months) had the highest positive rate. Infections by hMPV showed similar epidemiology and clinical manifestations as for respiratory syncytial virus (RSV) and were found in high co-infections with RSV. Subgroup A2 hMPV was the most predominant genotype identified during the study period. This study indicates that hMPV is one of the major respiratory pathogens found in children in southwest China and vaccine development should be under consideration. Pediatr. Pulmonol. 2010; 45:824,831. © 2010 Wiley-Liss, Inc. [source]


Atomic force microscopy: A powerful molecular toolkit in nanoproteomics

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 24 2009
Yves F. DufrêneArticle first published online: 7 OCT 200
Abstract Analysing microbial cell surface proteins is a challenging task in current microbial proteomic research, which has major implications for drug design, vaccine development, and microbial monitoring. In this context, atomic force microscopy (AFM) has recently emerged has a powerful characterization platform, providing valuable insights into the surface proteome of microbial cells. The aim of this article is to show how advanced AFM techniques, that all have in common functionalization of the AFM tip with specific molecules, can be used to answer pertinent questions related to surface-associated proteins, such as what is their spatial arrangement on the cell surface, and what are the forces driving their interaction with the environment? [source]


Identification of immunogenic cell wall-associated proteins of Streptococcus suis serotype 2

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 17 2008
Anding Zhang
Abstract Streptococcus suis serotype 2 (SS2) is a porcine and human pathogen with adhesive and invasive properties. The absence of suitable vaccine or virulent marker can be the bottleneck to control SS2 infection. An immunoproteome-based approach was developed to identify candidate antigens of SS2 for vaccine development. Hyperimmune sera, convalescent sera, and control sera were analyzed for reactivity by Western Blot against SS2 cell wall-associated proteins (WAPs) separated by 2-DE. A total of 34 proteins were identified by immunoproteomic analysis, of which 15 were recognized by both hyperimmune sera and convalescent sera, including most WAPs currently characterized as SS2 vaccine candidate antigens: muramidase-released protein (MRP), surface protein SP1 (Sao), and glyceraldehyde-3-phosphate dehydrogenase (GapdH). The novel immunogenic proteins may be developed as alternative antigens for further study of SS2 vaccine and diagnostics. [source]


Direct analysis of the extracellular proteome from two strains of Helicobacter pylori

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 13 2007
Todd G. Smith
Abstract Helicobacter pylori extracellular proteins are of interest because of possible roles in pathogenesis, host recognition, and vaccine development. We utilized a unique approach by growing two strains (including one nonsequenced strain) in a defined serum-free medium and directly analyzing the proteins present in the culture supernatants by LC-MS/MS. Over 125 proteins were identified in the extracellular proteomes of two H. pylori strains. Forty-five of these proteins were enriched in the extracellular fraction when compared to soluble cell-associated protein samples. Our analysis confirmed and expanded on the previously reported H. pylori extracellular proteome. Extracellular proteins of interest identified here included cag pathogenicity island protein Cag24 (CagD); proteases HP0657 and HP1012; a polysaccharide deacetylase, HP0310, possibly involved in the hydrolysis of acetyl groups from host N -acetylglucosamine residues or from residues on the cell surface; and HP0953, an uncharacterized protein that appears to be restricted to Helicobacter species that colonize the gastric mucosa. In addition, our analysis found eight previously unidentified outer membrane proteins and two lipoproteins that could be important cell surface proteins. [source]


Establishment of a two-dimensional electrophoresis map for Neospora caninum tachyzoites by proteomics

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 12 2003
Eung Goo Lee
Abstract Expressed proteins and antigens from Neospora caninum tachyzoites were studied by two-dimensional gel electrophoresis and immunoblot analysis combined with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Thirty-one spots corresponding to 20 different proteins were identified from N. caninum tachyzoites by peptide mass fingerprinting. Six proteins were identified from a N. caninum database (NTPase, 14-3-3 protein homologue, NcMIC1, NCDG1, NcGRA1 and NcGRA2), and 11 proteins were identified in closely related species using the T. gondii database (HSP70, HSP60, pyruvate kinase, tubulin ,- and ,-chain, putative protein disulfide isomerase, enolase, actin, fructose-1,6-bisphosphatase, lactate dehydrogenase and glyceradehyde-3-phosphate dehydrogenase). One hundred and two antigen spots were observed using pH 4,7 IPG strips on immunoblot profiles. Among them, 17 spots corresponding to 11 antigenic proteins were identified from a N. caninum protein map. This study involved the construction of in-depth protein maps for N. caninum tachyzoites, which will be of value for studies of its pathogenesis, drug and vaccine development, and phylogenetic studies. [source]