Vaccine Antigens (vaccine + antigen)

Distribution by Scientific Domains


Selected Abstracts


HLA type and immune response to Borrelia burgdorferi outer surface protein a in people in whom arthritis developed after Lyme disease vaccination

ARTHRITIS & RHEUMATISM, Issue 4 2009
Robert Ball
Objective To investigate whether persons with treatment-resistant Lyme arthritis,associated HLA alleles might develop arthritis as a result of an autoimmune reaction triggered by Borrelia burgdorferi outer surface protein A (OspA), the Lyme disease vaccine antigen. Methods Persons in whom inflammatory arthritis had developed after Lyme disease vaccine (cases) were compared with 3 control groups: 1) inflammatory arthritis but not Lyme disease vaccine (arthritis controls), 2) Lyme disease vaccine but not inflammatory arthritis (vaccine controls), and 3) neither Lyme disease vaccine nor inflammatory arthritis (normal controls). HLA,DRB1 allele typing, Western blotting for Lyme antigen, and T cell reactivity testing were performed. Results Twenty-seven cases were matched with 162 controls (54 in each control group). Odds ratios (ORs) for the presence of 1 or 2 treatment-resistant Lyme arthritis alleles were 0.8 (95% confidence interval [95% CI] 0.3-2.1), 1.6 (95% CI 0.5,4.4), and 1.75 (95% CI 0.6,5.3) in cases versus arthritis controls, vaccine controls, and normal controls, respectively. There were no significant differences in the frequency of DRB1 alleles. T cell response to OspA was similar between cases and vaccine controls, as measured using the stimulation index (OR 1.6 [95% CI 0.5,5.1]) or change in uptake of tritiated thymidine (counts per minute) (OR 0.7 [95% CI 0.2,2.3]), but cases were less likely to have IgG antibodies to OspA (OR 0.3 [95% CI 0.1,0.8]). Cases were sampled closer to the time of vaccination (median 3.59 years versus 5.48 years), and fewer cases had received 3 doses of vaccine (37% versus 93%). Conclusion Treatment-resistant Lyme arthritis alleles were not found more commonly in persons who developed arthritis after Lyme disease vaccination, and immune responses to OspA were not significantly more common in arthritis cases. These results suggest that Lyme disease vaccine is not a major factor in the development of arthritis in these cases. [source]


Neisseria meningitidis serogroup B: laboratory correlates of protection

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 2 2002
Clementien Vermont
Abstract Meningococcal disease in the Western countries is frequently caused by Neisseria meningitidis serogroup B. Major efforts have been made to develop a safe and efficacious vaccine against this serogroup which is suitable for use in infants and young children. To assess the quality of the immune response after vaccination with candidate vaccines, laboratory correlates of protection are needed. For serogroups A and C, serum bactericidal activity (SBA) is a well established predictor for protection, but for serogroup B other mechanisms besides SBA may also be involved in conferring protection from disease. Several laboratory methods for identification and evaluation of the immunogenicity of possible vaccine antigens are described in this review. [source]


The CD8+ dendritic cell subset

IMMUNOLOGICAL REVIEWS, Issue 1 2010
Ken Shortman
Summary:, Mouse lymphoid tissues contain a subset of dendritic cells (DCs) expressing CD8, together with a pattern of other surface molecules that distinguishes them from other DCs. These molecules include particular Toll-like receptor and C-type lectin pattern recognition receptors. A similar DC subset, although lacking CD8 expression, exists in humans. The mouse CD8+ DCs are non-migrating resident DCs derived from a precursor, distinct from monocytes, that continuously seeds the lymphoid organs from bone marrow. They differ in several key functions from their CD8, DC neighbors. They efficiently cross-present exogenous cell-bound and soluble antigens on major histocompatibility complex class I. On activation, they are major producers of interleukin-12 and stimulate inflammatory responses. In steady state, they have immune regulatory properties and help maintain tolerance to self-tissues. During infection with intracellular pathogens, they become major presenters of pathogen antigens, promoting CD8+ T-cell responses to the invading pathogens. Targeting vaccine antigens to the CD8+ DCs has proved an effective way to induce cytotoxic T lymphocytes and antibody responses. [source]


Immunogenicity and effect of a virosomal influenza vaccine on viral replication and T-cell activation in HIV-infected children receiving highly active antiretroviral therapy,

JOURNAL OF MEDICAL VIROLOGY, Issue 4 2006
Elisabetta Tanzi
Abstract In order to evaluate the immunogenicity and the effect of a virosomal influenza vaccine on viral replication and T-cell activation in HIV-infected children receiving highly active antiretroviral therapy (HAART), 29 children infected with HIV-1 vertically (19 primed with a previous influenza vaccination and 10 who were not been immunized against influenza) were immunized with an intramuscular virosome-adjuvanted influenza vaccine. According to the European Agency for Evaluation of Medical Products (EMEA) criteria, the immunogenicity of the vaccine was adequate against all three influenza strains (A H1N1, A H3N2, and B) in the primed children, and against A H1N1 and A H3N2 in the unprimed children. After in vitro stimulation with vaccine antigens, the IFN-, levels in the peripheral blood mononuclear cells cultures increased significantly from a baseline level of 103.0,±,229.8 pg/ml to a 30-day level of 390.7,±,606.3 pg/ml (P,<,0.05), with concentrations significantly higher (P,<,0.05) in the primed children than in the unprimed children. No increase in plasma HIV-1 RNA or HIV-1 proviral DNA was observed in either subgroup, and the immunophenotype analyses demonstrated that the CD4+ cell counts and percentages, the CD4/CD8 ratio and activated lymphocytes remained stable in either group from baseline to 1 month after each vaccine dose. This study showed that the virosomal influenza vaccine does seem to be immunogenic in the majority of HIV-infected children receiving HAART and does not induce viral replication or T-cell activation. Given the possible influenza-related complications in children infected with HIV, these results support the use of this influenza vaccine in such patients. J. Med. Virol. 78:440,445, 2006. © 2006 Wiley-Liss, Inc. [source]


An investigation of the factors controlling the adsorption of protein antigens to anionic PLG microparticles

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2005
James Chesko
Abstract This work examines physico-chemical properties influencing protein adsorption to anionic PLG microparticles and demonstrates the ability to bind and release vaccine antigens over a range of loads, pH values, and ionic strengths. Poly(lactide-co-glycolide) microparticles were synthesized by a w/o/w emulsification method in the presence of the anionic surfactant DSS (dioctyl sodium sulfosuccinate). Ovalbumin (OVA), carbonic anhydrase (CAN), lysozyme (LYZ), lactic acid dehydrogenase, bovine serum albumin (BSA), an HIV envelope glyocoprotein, and a Neisseria meningitidis B protein were adsorbed to the PLG microparticles, with binding efficiency, initial release and zeta potentials measured. Protein (antigen) binding to PLG microparticles was influenced by both electrostatic interaction and other mechanisms such as van der Waals forces. The protein binding capacity was directly proportional to the available surface area and may have a practical upper limit imposed by the formation of a complete protein monolayer as suggested by AFM images. The protein affinity for the PLG surface depended strongly on the isoelectric point (pI) and electrostatic forces, but also showed contributions from nonCoulombic interactions. Protein antigens were adsorbed on anionic PLG microparticles with varying degrees of efficiency under different conditions such as pH and ionic strength. Observable changes in zeta potentials and morphology suggest the formation of a surface monolayer. Antigen binding and release occur through a combination of electrostatic and van der Waals interactions occurring at the polymer-solution interface. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:2510-2519, 2005 [source]


From fundamental studies of sporulation to applied spore research

MOLECULAR MICROBIOLOGY, Issue 2 2005
Imrich Barák
Summary Sporulation in the Gram-positive bacterium, Bacillus subtilis, has been used as an excellent model system to study cell differentiation for almost half a century. This research has given us a detailed picture of the genetic, physiological and biochemical mechanisms that allow bacteria to survive harsh environmental conditions by forming highly robust spores. Although many basic aspects of this process are now understood in great detail, including the crystal and NMR structures of some of the key proteins and their complexes, bacterial sporulation still continues to be a highly attractive model for studying various cell processes at a molecular level. There are several reasons for such scientific interest. First, some of the complex steps in sporulation are not fully understood and/or are only described by ,controversial' models. Second, intensive research on unicellular development of a single microorganism, B. subtilis, left us largely unaware of the multitude of diverse sporulation mechanisms in many other Gram-positive endospore and exospore formers. This diversity would likely be increased if we were to include sporulation processes in the Gram-negative spore formers. Spore formers have great potential in applied research. They have been used for many years as biodosimeters and as natural insecticides, exploited in the industrial production of enzymes, antibiotics, used as probiotics and, more, exploited as possible vectors for drug delivery, vaccine antigens and other immunomodulating molecules. This report describes these and other aspects of current fundamental and applied spore research that were presented at European Spores Conference held in Smolenice Castle, Slovakia, June 2004. [source]


Strategies for development of vaccines for control of ixodid tick species

PARASITE IMMUNOLOGY, Issue 7 2006
J. DE LA FUENTE
SUMMARY Ticks are distributed worldwide and impact human and animal health, as well as food animal production. Control of ticks has been primarily by application of acaricides, which has resulted in selection of resistant ticks and environmental pollution. Vaccines have been shown to be a feasible tick control method that offers a cost-effective, environmentally friendly alternative to chemical control. However, identification of tick-protective antigens remains the limiting step in vaccine development. Tick antigens exposed naturally to the host during tick feeding and those concealed have both shown promise as candidate vaccine antigens. Development of vaccines against multiple tick species may be possible using highly conserved tick-protective antigens or by antigens showing immune cross-reaction to different tick species. Vaccines made from a combination of key protective antigens may greatly enhance vaccine efficacy. Preliminary studies have suggested the possibility of vaccine strategies directed toward both tick control and the blocking of pathogen transmission. Characterization of the tick genomes will have a great impact on the discovery of new protective antigens. The future of research directed toward tick vaccine development is exciting because of new and emerging technologies for gene discovery, and vaccine formulation and delivery. [source]


Recommendations for immunizations in stem cell transplantation

PEDIATRIC TRANSPLANTATION, Issue 2003
Deborah C. Molrine
Abstract: Investigations over the past decade have documented that there is a decline in immunity to vaccine preventable diseases in many SCT recipients. The majority of immunization studies conducted in SCT recipients to date support the use of multi-dose regimens for most protein and polysaccharide-conjugate vaccine antigens. The consensus immunization schedule recommended by ACIP/IDSA/ASBMT provides guidance for centers to utilize available vaccines in their SCT populations. With the exception of pneumococcal disease, a schedule beginning at 12 months after SCT is reasonable given the low incidence of disease in HSCT recipients for most of the recommended vaccines and improved immune reconstitution in most recipients by one year post transplant. SCT recipients respond poorly to unconjugated pneumococcal polysaccharide vaccine and the development of polysaccharide-protein conjugate vaccines against S. pneumoniae holds promise to impact potentially on clinical disease in this population. In addition, the strategy of donor immunization may also be effective in eliciting early protective immune responses to vaccine antigens. Future challenges will be the development of safe and effective vaccines against the viral pathogens responsible for considerable morbidity and mortality after SCT. [source]


Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery

PLANT BIOTECHNOLOGY JOURNAL, Issue 2 2010
Abdoreza Davoodi-Semiromi
Summary Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin-B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce, respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen-specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB-specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin-10+ T cell but not Foxp3+ regulatory T cells, suppression of interferon-, and absence of interleukin-17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast-derived vaccine antigens for long-term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity. [source]


Approaches to achieve high-level heterologous protein production in plants

PLANT BIOTECHNOLOGY JOURNAL, Issue 1 2007
Stephen J. Streatfield
Summary Plants offer an alternative to microbial fermentation and animal cell cultures for the production of recombinant proteins. For protein pharmaceuticals, plant systems are inherently safer than native and even recombinant animal sources. In addition, post-translational modifications, such as glycosylation, which cannot be achieved with bacterial fermentation, can be accomplished using plants. The main advantage foreseen for plant systems is reduced production costs. Plants should have a particular advantage for proteins produced in bulk, such as industrial enzymes, for which product pricing is low. In addition, edible plant tissues are well suited to the expression of vaccine antigens and pharmaceuticals for oral delivery. Three approaches have been followed to express recombinant proteins in plants: expression from the plant nuclear genome; expression from the plastid genome; and expression from plant tissues carrying recombinant plant viral sequences. The most important factor in moving plant-produced heterologous proteins from developmental research to commercial products is to ensure competitive production costs, and the best way to achieve this is to boost expression. Thus, considerable research effort has been made to increase the amount of recombinant protein produced in plants. This research includes molecular technologies to increase replication, to boost transcription, to direct transcription in tissues suited for protein accumulation, to stabilize transcripts, to optimize translation, to target proteins to subcellular locations optimal for their accumulation, and to engineer proteins to stabilize them. Other methods include plant breeding to increase transgene copy number and to utilize germplasm suited to protein accumulation. Large-scale commercialization of plant-produced recombinant proteins will require a combination of these technologies. [source]


Human pathogenic streptococcal proteomics and vaccine development

PROTEOMICS - CLINICAL APPLICATIONS, Issue 3 2008
Jason N. Cole
Abstract Gram-positive streptococci are non-motile, chain-forming bacteria commonly found in the normal oral and bowel flora of warm-blooded animals. Over the past decade, a proteomic approach combining 2-DE and MS has been used to systematically map the cellular, surface-associated and secreted proteins of human pathogenic streptococcal species. The public availability of complete streptococcal genomic sequences and the amalgamation of proteomic, genomic and bioinformatic technologies have recently facilitated the identification of novel streptococcal vaccine candidate antigens and therapeutic agents. The objective of this review is to examine the constituents of the streptococcal cell wall and secreted proteome, the mechanisms of transport of surface and secreted proteins, and describe the current methodologies employed for the identification of novel surface-displayed proteins and potential vaccine antigens. [source]


Production of biopharmaceuticals and vaccines in plants via the chloroplast genome

BIOTECHNOLOGY JOURNAL, Issue 10 2006
Henry Daniell Dr.Article first published online: 27 SEP 200
Abstract Transgenic plants offer many advantages, including low cost of production (by elimination of fermenters), storage and transportation; heat stability; and absence of human pathogens. When therapeutic proteins are orally delivered, plant cells protect antigens in the stomach through bioencapsulation and eliminate the need for expensive purification and sterile injections, in addition to development of both systemic and mucosal immunity. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance and multi-gene expression in a single transformation event. Hyper-expression of vaccine antigens against cholera, tetanus, anthrax, plague or canine parvovirus (4,31% of total soluble protein, tsp) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato), as well as the availability of antibiotic-free selectable markers or the ability to excise selectable marker genes, facilitate oral delivery. Hyper-expression of several therapeutic proteins, including human serum albumin (11.1% tsp), somatotropin (7% tsp), interferon-gamma (6% tsp), anti-microbial peptide (21.5% tsp), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitate assembly of complex multi-subunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLa cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner. [source]


Immunogenicity and reactogenicity of DTPa-HBV-IPV/Hib vaccine as primary and booster vaccination in low-birth-weight premature infants

ACTA PAEDIATRICA, Issue 9 2008
Liliana Vázquez
Abstract Aim: To assess suitability of a combined DTPa-HBV-IPV/Hib vaccine (Infanrix hexaÔ) for immunization of low-birth-weight (<2.0 kg) preterm infants, with particular focus on the hepatitis B response. Methods: Open-label study in 170 preterm infants receiving primary vaccination at 2, 4 and 6 months of age and booster vaccination at 18,24 months. Enrolment and analysis were stratified in two groups: infants with birth weight between 1.5 kg and 2.0 kg (low birth weight: LBW), infants with BW <1.5 kg (very low birth weight: VLBW). Results: One month after the three dose primary vaccination, 93.7% and 94.9% of infants in VLBW and LBW groups, respectively, had anti-HBs antibody concentrations , 10 mIU/mL. High seroprotection and response rates (92.4,100%) to all vaccine antigens were observed. Those were reinforced (>98%) by booster vaccination for all antigens except for HBs in VLBW children: only 88.7% of those had anti-HBs antibody concentrations , 10 mIU/mL, compared with 96.5% of LBW children (difference statistically not significant). The vaccine was well tolerated in both groups of infants. Conclusion: Preterm infants will benefit by the administration of a primary and booster vaccination with DTPa-HBV-IPV/Hib vaccine. [source]