Home About us Contact | |||
Vmax Values (vmax + value)
Selected AbstractsDown-regulation of reduced folate carrier may result in folate malabsorption across intestinal brush border membrane during experimental alcoholismFEBS JOURNAL, Issue 24 2007Abid Hamid Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The intestinal folate uptake is tightly and diversely regulated, and disturbances in folate homeostasis are observed in alcoholism, attributable, in part, to intestinal malabsorption of folate. The aim of this study was to delineate the regulatory mechanisms of folate transport in intestinal absorptive epithelia in order to obtain insights into folate malabsorption in a rat model of alcoholism. The rats were fed 1 g·kg,1 body weight of ethanol daily for 3 months. A reduced uptake of [3H]folic acid in intestinal brush border membrane was observed over the course of ethanol administration for 3 months. Folate transport exhibited saturable kinetics and the decreased intestinal brush border membrane folate transport in chronic alcoholism was associated with an increased Km value and a low Vmax value. Importantly, the lower intestinal [3H]folic acid uptake in ethanol-fed rats was observed in all cell fractions corresponding to villus tip, mid-villus and crypt base. RT-PCR analysis for reduced folate carrier, the major folate transporter, revealed that reduced folate carrier mRNA levels were decreased in jejunal tissue derived from ethanol-fed rats. Parallel changes were observed in reduced folate carrier protein levels in brush border membrane along the entire crypt,villus axis. In addition, immunohistochemical staining for reduced folate carrier protein showed that, in alcoholic conditions, deranged reduced folate carrier localization was observed along the entire crypt,villus axis, with a more prominent effect in differentiating crypt base stem cells. These changes in functional activity of the membrane transport system were not caused by a general loss of intestinal architecture, and hence can be attributed to the specific effect of ethanol ingestion on the folate transport system. The low folate uptake activity observed in ethanol-fed rats was found to be associated with decreased serum and red blood cell folate levels, which might explain the observed jejunal genomic hypomethylation. These findings offer possible mechanistic insights into folate malabsorption during alcoholism. [source] Presence of a Na+ -stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophyticaFEMS MICROBIOLOGY LETTERS, Issue 1 2007Kanjana Wiangnon Abstract Aphanothece cells could take up Na+ and this uptake was strongly inhibited by the protonophore, carbonyl cyanide m -chlorophenylhydrazone (CCCP). Cells preloaded with Na+ exhibited Na+ extrusion ability upon energizing with glucose. Na+ was also taken up by the plasma membranes supplied with ATP and the uptake was abolished by gramicidin D, monensin or Na+ -ionophore. Orthovanadate and CCCP strongly inhibited Na+ uptake, whereas N, N, -dicyclohexylcarbodiimide (DCCD) slightly inhibited the uptake. Plasma membranes could hydrolyse ATP in the presence of Na+ but not with K+, Ca2+ and Li+. The Km values for ATP and Na+ were 1.66±0.12 and 25.0±1.8 mM, respectively, whereas the Vmax value was 0.66±0.05 ,mol min,1 mg,1. Mg2+ was required for ATPase activity whose optimal pH was 7.5. The ATPase was insensitive to N -ethylmaleimide, nitrate, thiocyanate, azide and ouabain, but was substantially inhibited by orthovanadate and DCCD. Amiloride, a Na+/H+ antiporter inhibitor, and CCCP showed little or no effect. Gramicidin D and monensin stimulated ATPase activity. All these results suggest the existence of a P-type Na+ -stimulated ATPase in Aphanothece halophytica. Plasma membranes from cells grown under salt stress condition showed higher ATPase activity than those from cells grown under nonstress condition. [source] Study of in vitro glucuronidation of hydroxyquinolines with bovine liver microsomesFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2002Masanobu Kanou Abstract Glucuronidation of drugs by UDP-glucuronosyltransferase (UGT) is a major phase II conjugation reaction. Defects in UGT are associated with Crigler,Najjar syndrome and Gilbert's syndrome with severe hyperbilirubinaemias and jaundice. We analysed the reactivities of some hydroxyquinoline derivatives, which are naturally produced from quinoline by cytochrome P450. The analyses were carried out using a microassay system for UGT activity in bovine liver microsomes in the range 0.5,100 pmol/assay with the highly sensitive radio-image analyser Fuji BAS2500 (Fujifilm, Tokyo, Japan). 3-Hydroxylquinoline is a good substrate for glucuronidation, and the relative Kcat values were 3.1-fold higher than the values for p-nitrophenol. 5,6-Dihydroquinoline-5,6- trans -diol gave a similar Km value to that of 3-hydroxyquinoline, but the Vmax value was approximately 1/15 of that of p-nitrophenol and showed weak reactivity. Quinoline N-oxide gave a low Vmax value and showed marginal activity. The Kcat values of 6-hydroxyquinoline and 5-hydroxyquinoline were 2.1- and 1.2-fold higher than that of p-nitrophenol, respectively. Fluoroquinoline (FQ) derivatives, such as 3FQ, 7,8diFQ and 6,7,8triFQ, did not show any substrate activities. These results suggest that there are therapeutic problems in administration of some quinoline drugs to patients with jaundice. [source] Glucuronidation of olanzapine by cDNA-expressed human UDP-glucuronosyltransferases and human liver microsomesHUMAN PSYCHOPHARMACOLOGY: CLINICAL AND EXPERIMENTAL, Issue 5 2002Kristian Linnet Abstract Olanzapine is a widely used, newer antipsychotic agent, which is metabolized by various pathways: hydroxylation and N -demethylation by cytochrome P450, N -oxidation by flavin monooxygenase and direct glucuronidation. In vivo studies have pointed towards the latter pathway as being of major importance. Accordingly, the glucuronidation reaction was studied in vitro using cDNA-expressed human UDP-glucuronosyltransferase (UGT) enzymes and a pooled human liver microsomal preparation (HLM). Glucuronidated olanzapine was determined by HPLC after acid or enzymatic hydrolysis. The following UGT-isoenzymes were screened for their ability to glucuronidate olanzapine: 1A1, 1A3, 1A4, 1A6, 1A9, 2B7 and 2B15. Only UGT1A4 was able to glucuronidate olanzapine obeying saturation kinetics. The Km value was 227,,mol/l (SE 43), i.e. of the same order of magnitude as for other psychotropic drugs, and the Vmax value was 2370,pmol/(min,mg) (SE 170). Glucuronidation was also mediated by the HLM preparation, but a saturation level was not reached. The olanzapine glucuronidation reaction was inhibited by several drugs known as substrates for UGT1A4, e.g. amitriptyline, trifluoperazine and lamotrigine. Thus, competition for glucuronidation by UGT1A4 represents a possibility for drug,drug interactions in subjects receiving several of these psychotropic drugs at the same time. Whether such possible interactions are of any clinical importance may await further studies in patients. Copyright © 2002 John Wiley & Sons, Ltd. [source] GRK1 and GRK7: Unique cellular distribution and widely different activities of opsin phosphorylation in the zebrafish rods and conesJOURNAL OF NEUROCHEMISTRY, Issue 3 2006Yasutaka Wada Abstract Retinal cone cells exhibit distinctive photoresponse with a more restrained sensitivity to light and a more rapid shutoff kinetics than those of rods. To understand the molecular basis for these characteristics of cone responses, we focused on the opsin deactivation process initiated by G protein-coupled receptor kinase (GRK) 1 and GRK7 in the zebrafish, an animal model suitable for studies on retinal physiology and biochemistry. Screening of the ocular cDNAs identified two homologs for each of GRK1 (1A and 1B) and GRK7 (7,1 and 7,2), and they were classified into three GRK subfamilies, 1 A, 1B and 7 by phylogenetic analysis. In situ hybridization and immunohistochemical studies localized both GRK1B and GRK7-1 in the cone outer segments and GRK1A in the rod outer segments. The opsin/GRKs molar ratio was estimated to be 569 in the rod and 153 in the cone. The recombinant GRKs phosphorylated light-activated rhodopsin, and the Vmax value of the major cone subtype, GRK7-1, was 32-fold higher than that of the rod kinase, GRK1A. The reinforced activity of the cone kinase should provide a strengthened shutoff mechanism of the light-signaling in the cone and contribute to the characteristics of the cone responses by reducing signal amplification efficiency. [source] Substrate-Dependent Modulation of UDP-Glucuronosyltransferase 1A1 (UGT1A1) by Propofol in Recombinant Human UGT1A1 and Human Liver MicrosomesBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 3 2007Yuji Mano In the present study, we investigated the mechanism of activation, and whether the stimulatory effect occurs when another substrate is used with human liver microsomes. The glucuronidation of 4-MU followed Michaelis-Menten kinetics with a Km value of 101 µM in the absence of propofol. In the presence of 200 µM propofol, a concentration that causes heterotopic activation of 4-MU glucuronidation (4-MUG), the Vmax value increased to 1.5-fold, while the Km value decreased to 0.53-fold. In order to assess whether propofol activates UGT1A1 activity for a substrate other than 4-MU, the effect of propofol on oestradiol 3,-glucuronidation by recombinant UGT1A1 and in human liver microsomes was evaluated. In contrast to 4-MUG activity, propofol inhibited UGT1A1-catalysed oestradiol 3,-glucuronidation in recombinant UGT1A1 as well as in human liver microsomes with IC50 values of 59 and 228 µM, respectively. In addition, a known UGT1A1 modulator, 17,-ethynyloestradiol, stimulated oestradiol 3,-glucuronidation slightly at a concentration of 5 µM, while it inhibited 4-MUG in recombinant UGT1A1 at all concentrations tested (5,100 µM). These findings indicate that the modulation of UGT1A1 by propofol is substrate-dependent, and thus care should be taken when extrapolating the stimulatory effects of drugs for one glucuronidation substrate. [source] P71 Metabolism of delta-3-Carene by human cytochrom 450 enzymesCONTACT DERMATITIS, Issue 3 2004Mike Duisken Occupational exposure to monoterpenes occurs in saw mills, particle-board plants, carpentry shops and other types of wood-treating industries. The bicyclic monoterpene delta-3-Carene, one of the components of turpentine, may irritate the skin and muceous membranes and prolonged exposure may result in allergic contact dermatitis or chronic lung function impairment. The effects of low concentrations of delta-3-Carene on alveolar macrophages in vitro were examined and a dose-dependent relationship between the cell viability and the delta-3-Carene concentration was found. Little is known about the metabolism of delta-3-Carene in mammalians. In order to determine the toxic potential of this monoterpene we studied the human metabolism of delta-3-Carene in vitro. Therefore we used pooled human liver S9 and human liver microsomal cytochrome P450 enzymes. By using GC-MS analysis we found one main metabolite produced at high rates. The structure was identified by its mass spectra. The mass fragmentation indicated hydroxylation in allyl position. After synthesis of the assumed product in a four step reaction, it was characterized as delta-3-Carene-10-ol. There was a clear correlation between the concentration of the metabolite production, incubation time and enzyme concentration, respectively. Kinetic analysis showed that Km and Vmax values for the oxidation of delta-3-Carene by human liver microsomes were 0.39 ,M and 0.2 nmol/min/nmol P450. It is the first time that delta-3-Carene-10-ol is described as human metabolite of delta-3-Carene. [source] Rat strain differences in peripheral and central serotonin transporter protein expression and functionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003Francesca Fernandez Abstract Female Fischer 344 (F344) rats have been shown to display increased serotonin transporter (5-HTT) gene expression in the dorsal raphe, compared to female Lewis (LEW) rats. Herein, we explored, by means of synaptosomal preparations and in vivo microdialysis, whether central, but also peripheral, 5-HTT protein expression/function differ between strains. Midbrain and hippocampal [3H]paroxetine binding at the 5-HTT and hippocampal [3H]serotonin (5-HT) reuptake were increased in male and female F344 rats, compared to their LEW counterparts, these strain differences being observed both in rats of commercial origin and in homebred rats. Moreover, in homebred rats, it was found that these strain differences extended to blood platelet 5-HTT protein expression and function. Saturation studies of midbrain and hippocampal [3H]paroxetine binding at the 5-HTT, and hippocampal and blood platelet [3H]5-HT reuptake, also revealed significant strain differences in Bmax and Vmax values. Although F344 and LEW rats differ in the activity of the hypothalamo-pituitary-adrenal (HPA) axis, manipulations of that axis revealed that the strain differences in hippocampal [3H]paroxetine binding at 5-HTTs and [3H]5-HT reuptake were not accounted for by corticosteroids. Hippocampal extracellular 5-HT levels were reduced in F344 rats, compared to LEW rats, with the relative, but not the absolute, increase in extracellular 5-HT elicited by the local administration of citalopram being larger in F344 rats. Because the aforementioned strain differences did not lie in the coding sequences of the 5-HTT gene, our results open the promising hypothesis that F344 and LEW strains model functional polymorphisms in the promoter region of the human 5-HTT gene. [source] Increased glucose metabolism and ATP level in brain tissue of Huntington's disease transgenic miceFEBS JOURNAL, Issue 19 2008Judit Oláh Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by multifarious dysfunctional alterations including mitochondrial impairment. In the present study, the formation of inclusions caused by the mutation of huntingtin protein and its relationship with changes in energy metabolism and with pathological alterations were investigated both in transgenic and 3-nitropropionic acid-treated mouse models for HD. The HD and normal mice were characterized clinically; the affected brain regions were identified by immunohistochemistry and used for biochemical analysis of the ATP-producing systems in the cytosolic and the mitochondrial compartments. In both HD models, the activities of some glycolytic enzymes were somewhat higher. By contrast, the activity of glyceraldehyde-3-phosphate dehydrogenase was much lower in the affected region of the brain compared to that of the control. Paradoxically, at the system level, glucose conversion into lactate was enhanced in cytosolic extracts from the HD brain tissue, and the level of ATP was higher in the tissue itself. The paradox could be resolved by taking all the observed changes in glycolytic enzymes into account, ensuing an experiment-based detailed mathematical model of the glycolytic pathway. The mathematical modelling using the experimentally determined kinetic parameters of the individual enzymes and the well-established rate equations predicted the measured flux and concentrations in the case of the control. The same mathematical model with the experimentally determined altered Vmax values of the enzymes did account for an increase of glycolytic flux in the HD sample, although the extent of the increase was not predicted quantitatively. This suggested a somewhat altered regulation of this major metabolic pathway in HD tissue. We then used the mathematical model to develop a hypothesis for a new regulatory interaction that might account for the observed changes; in HD, glyceraldehyde-3-phosphate dehydrogenase may be in closer proximity (perhaps because of the binding of glyceraldehyde-3-phosphate dehydrogenase to huntingtin) with aldolase and engage in channelling for glyceraldehyde-3-phosphate. By contrast to most of the speculation in the literature, our results suggest that the neuronal damage in HD tissue may be associated with increased energy metabolism at the tissue level leading to modified levels of various intermediary metabolites with pathological consequences. [source] Experimental validation of metabolic pathway modelingFEBS JOURNAL, Issue 13 2008An illustration with glycolytic segments from Entamoeba histolytica In the search for new drug targets in the human parasite Entamoeba histolytica, metabolic control analysis was applied to determine, experimentally, flux control distribution of amebal glycolysis. The first (hexokinase, hexose-6-phosphate isomerase, pyrophosphate-dependent phosphofructokinase (PPi -PFK), aldolase and triose-phosphate isomerase) and final (3-phosphoglycerate mutase, enolase and pyruvate phosphate dikinase) glycolytic segments were reconstituted in vitro with recombinant enzymes under near-physiological conditions of pH, temperature and enzyme proportion. Flux control was determined by titrating flux with each enzyme component. In parallel, both glycolytic segments were also modeled by using the rate equations and kinetic parameters previously determined. Because the flux control distribution predicted by modeling and that determined by reconstitution were not similar, kinetic interactions among all the reconstituted components were experimentally revised to unravel the causes of the discrepancy. For the final segment, it was found that 3-phosphoglycerate was a weakly competitive inhibitor of enolase, whereas PPi was a moderate inhibitor of 3-phosphoglycerate mutase and enolase. For the first segment, PPi was both a strong inhibitor of aldolase and a nonessential mixed-type activator of amebal hexokinase; in addition, lower Vmax values for hexose-6-phosphate isomerase, PPi -PFK and aldolase were induced by PPi or ATP inhibition. It should be noted that PPi and other metabolites were absent from the 3-phosphoglycerate mutase and enolase or aldolase and hexokinase kinetics experiments, but present in reconstitution experiments. Only by incorporating these modifications in the rate equations, modeling predicted values of flux control distribution, flux rate and metabolite concentrations similar to those experimentally determined. The experimentally validated segment models allowed ,in silico experimentation' to be carried out, which is not easy to achieve in in vivo or in vitro systems. The results predicted a nonsignificant effect on flux rate and flux control distribution by adding parallel routes (pyruvate kinase for the final segment and ATP-dependent PFK for the first segment), because of the much lower activity of these enzymes in the ameba. Furthermore, modeling predicted full flux-control by 3-phosphoglycerate mutase and hexokinase, in the presence of low physiological substrate and product concentrations. It is concluded that the combination of in vitro pathway reconstitution with modeling and enzyme kinetics experimentation permits a more comprehensive understanding of the pathway behavior and control properties. [source] A cocaine insensitive chimeric insect serotonin transporter reveals domains critical for cocaine interactionFEBS JOURNAL, Issue 16 2002Sumandeep K. Sandhu Serotonin transporters are key target sites for clinical drugs and psychostimulants, such as fluoxetine and cocaine. Molecular cloning of a serotonin transporter from the central nervous system of the insect Manduca sexta enabled us to define domains that affect antagonist action, particularly cocaine. This insect serotonin transporter transiently expressed in CV-1 monkey kidney cells exhibits saturable, high affinity Na+ and Cl, dependent serotonin uptake, with estimated Km and Vmax values of 436 ± 19 nm and 3.8 ± 0.6 × 10,18 mol·cell·min,1, respectively. The Manduca high affinity Na+/Cl, dependent transporter shares 53% and 74% amino acid identity with the human and fruit fly serotonin transporters, respectively. However, in contrast to serotonin transporters from these two latter species, the Manduca transporter is inhibited poorly by fluoxetine (IC50 = 1.23 µm) and cocaine (IC50 = 12.89 µm). To delineate domains and residues that could play a role in cocaine interaction, the human serotonin transporter was mutated to incorporate unique amino acid substitutions, detected in the Manduca homologue. We identified a domain in extracellular loop 2 (amino acids 148,152), which, when inserted into the human transporter, results in decreased cocaine sensitivity of the latter (IC50 = 1.54 µm). We also constructed a number of chimeras between the human and Manduca serotonin transporters (hSERT and MasSERT, respectively). The chimera, hSERT1,146/MasSERT106,587, which involved N-terminal swaps including transmembrane domains (TMDs) 1 and 2, was remarkably insensitive to cocaine (IC50 = 180 µm) compared to the human (IC50 = 0.431 µm) and Manduca serotonin transporters. The chimera MasSERT1,67/hSERT109,630, which involved only the TMD1 swap, showed greater sensitivity to cocaine (IC50 = 0.225 µm) than the human transporter. Both chimeras showed twofold higher serotonin transport affinity compared to human and Manduca serotonin transporters. Our results show TMD1 and TMD2 affect the apparent substrate transport and antagonist sensitivity by possibly providing unique conformations to the transporter. The availability of these chimeras facilitates elucidation of specific amino acids involved in interactions with cocaine. [source] Identification of rat cyclic nucleotide phosphodiesterase 11A (PDE11A)FEBS JOURNAL, Issue 16 2001Comparison of rat, human PDE11A splicing variants ,We have isolated and characterized rat cyclic nucleotide phosphodiesterase (PDE)11A, which exhibits properties of a dual-substrate PDE, and its splice variants (RNPDE11A2, RNPDE11A3, and RNPDE11A4). The deduced amino-acid sequence of the longest form of rat PDE11A splice variant, RNPDE11A4, was 94% identical with that of the human variant (HSPDE11A4). Rat PDE11A splice variants were expressed in a tissue-specific manner. RNPDE11A4 showed unique tissue distribution distinct from HSPDE11A4, which is specifically expressed in the prostate. Rat PDE11A splice variants were expressed in COS-7 cells, and their enzymatic characteristics were compared. Although the Km values for cAMP and cGMP were similar for all of them (1.3,1.6 and 2.1,3.9 µm, respectively), the Vmax values differed significantly (RNPDE11A4 >> RNPDE11A2 > RNPDE11A3). Human PDE11A variants also displayed very similar Km values and significantly different Vmax values (HSPDE11A4 >> HSPDE11A2 > HSPDE11A3 >> HSPDE11A1). The Vmax values of HSPDE11A4 for cAMP and cGMP were at least 100 times higher than those of HSPDE11A1. These observations indicate unique characteristics of PDE11A splicing variants. [source] Glucose-6-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: expression of the g6pd gene and characterization of an extremely thermophilic enzymeFEMS MICROBIOLOGY LETTERS, Issue 2 2002Thomas Hansen Abstract The gene (open reading frame Tm1155, g6pd) encoding glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) of the hyperthermophilic bacterium Thermotoga maritima was cloned and functionally expressed in Escherichia coli. The purified recombinant enzyme is a homodimer with an apparent molecular mass of 95 kDa composed of 60-kDa subunits. Rate dependence (at 80°C) on glucose-6-phosphate and NADP+ followed Michaelis,Menten kinetics with apparent Km values of 0.15 mM and 0.03 mM, respectively; apparent Vmax values were about 20 U mg,1. The enzyme also reduced NAD+ (apparent Km 12 mM, Vmax 12 U mg,1). The 1000-fold higher catalytic activity (kcat/Km) with NADP+ over NAD+ defines the G6PD as NADP+ specific in vivo. G6PD activity was competitively inhibited by NADPH with a Ki value of 0.11 mM. With a temperature optimum of 92°C the enzyme is the most thermoactive G6PD described. [source] Production, purification and thermal characterisation of invertase from a newly isolated Fusarium sp. under solid-state fermentationINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 7 2008Iram Shaheen Summary Production of invertase employing a newly isolated Fusarium sp. under solid-state fermentation was optimised. Different process parameters were optimised. The maximum enzyme activity under optimum conditions was 47.23 ± 2.12 U gds,1 with nitrogen additives. The enzyme was purified by ammonium sulphate precipitation, diethylaminoethyl cellulose ion-exchange chromatography and Sephadex gel filtration. This protocol gave 20.25-fold purification and 5.53% recovery. The optimum pH and temperature for activity were 5.0 and 50 °C. The Km and Vmax values for the enzyme were 8.33 mm and 21.48 ,mol min,1, respectively. A detailed kinetic study of thermal inactivation has been carried out. Enthalpy of activation (,H*) decreased when entropy (,S*) of activation increased at higher temperatures. Moreover, free energy of denaturation (,G*) increased at higher temperature making the enzyme thermally stable. A possible explanation for the thermal inactivation of invertase at higher temperatures is also discussed. [source] In vitro studies on the effects of Saccharomyces boulardii and Bacillus cereus var. toyoi on nutrient transport in pig jejunumJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 1-2 2000G. Breves The probiotics Saccharomyces boulardii and Bacillus cereus var. toyoi are nonpathogenic microbes which have been shown to affect certain functions of the mucosal barrier in pig jejunum such as electrogenic ion transport capacity and paracellular permeability. The present studies were performed to investigate potential effects of the probiotics on jejunal nutrient transport such as sodium-dependent glucose transport or proton-dependent dipeptide transport. For this purpose the in vitro Ussing-chamber technique was applied in order to examine net electrogenic ion flux rates (short circuit currents, Isc) across isolated intact jejunal epithelia in the absence and presence of either 10 mmol/l glucose (mucosal side) or two-fold application of 5 mmol/l glycyl- l -sarcosine or glycyl- l -glutamine to the mucosal bathing solution. Brush border membrane vesicles (BBMV) were prepared in order to characterize kinetic parameters (Vmax, Km) of Na-dependent glucose transport. Intestinal tissues were obtained from growing pigs in a weight range between 23 and 33 kg. All animals were fed twice daily and received 0.8,0.9 kg/day of a standard diet. After a 9- to 10-day adaptation period the diets for treated animals were either supplemented for 8 days with 1.7×107 colony-forming units (CFU)/g feed of S. boulardii or for 3 weeks with 106 CFU/g feed B. cereus var. toyoi. Under basal conditions Isc values were not affected by different treatment protocols (controls: 0.74 ± 0.04 µeq/cm2 per h, n=9; S. boulardii: 0.74 ± 0.12 µeq/cm2 per h, n=7; B. cereus 0.68 ± 0.09 µeq/cm2 per h, n=5). Irrespective of dietary treatment, the addition of glucose resulted in significant increases of Isc indicating substantial onset of electrogenic net Na/glucose cotransport. Maximal Isc values occurred within 30 min and reached 2.79 ± 0.41 µeq/cm2 per h in control epithelia. This was significantly lower than found in S. boulardii (4.47 ± 0.43 µeq/cm2 per h, p < 0.05) and B. cereus var. toyoi tissues (4.45 ± 0.31 µeq/cm2 per h, p < 0.05). Gt values were 22.4 ± 1.3 mS/cm2 in control animals and were significantly lower as shown in S. boulardii (p < 0.01) and B. cereus var. toyoi (p < 0.01)-treated animals (28.4 ± 1.3 and 29.9 ± 0.8 mS/cm2, respectively). Vmax values of Na-dependent glucose uptake into BBMV differed significantly between controls (0.64 ± 0.08 nmol/mg protein per 10 s; n=5), S. boulardii (0.89 ± 0.06 nmol/mg protein per 10 s; n=5, p < 0.05) and B. cereus var. toyoi preparations (1.08 ± 0.05 nmol/mg protein per 10 s; n=3, p < 0.01). Km values were not significantly affected (control: 0.31 ± 0.04 mmol/l, S. boulardii: 0.29 ± 0.05 mmol/l, B. cereus var. toyoi: 0.21 ± 0.01 mmol/l). Irrespective of dietary treatment, application of the dipeptide model substances glycyl- l -sarcosine or glycyl- l -glutamine resulted in significant increases of Isc indicating marked stimulation of electrogenic net H+/dipeptide cotransport. Highest Isc responses occurred in B. cereus var. toyoi preparations and lowest were found in control tissues. However, these differences were not significant. Gt values were not affected by different dietary treatments. The results clearly demonstrate that oral administration of either S. boulardii or B. cereus var. toyoi stimulates Na-dependent glucose absorption in pig jejunum. [source] TRICHODERMA REESEI,-GALACTOSIDASE ACTIVITY ON LOCUST BEAN AND GUAR GALACTOMANNANSJOURNAL OF FOOD BIOCHEMISTRY, Issue 4 2004SANG MOO KIM The effect of side-chain density on the kinetic parameters of a side-chain-cleaving hemicellulase was determined. Kinetic parameters were based on the rate of Trichoderma reesei ,- galactosidase-catalyzed liberation of galactose from galactomannan (guar and locust bean) substrates. The focus enzyme was the predominant ,-galactosidase obtained from the fungus'galactomannan-supplemented cell-free culture medium. Substrate concentrations were based on the number of galactosyl moieties per volume reaction mixture. The Km values for the galactomannan substrates differed approximately 4.3-fold (28.36 and 121.16 ,M), the more branched substrate having the higher Km. In contrast, the corresponding Vmax values were found to be essentially the same. The results indicate the enzyme preferentially acts at sites of low side-chain density. [source] KINETIC BEHAVIOR OF SOYBEAN LIPOXYGENASE: A COMPARATIVE STUDY OF THE FREE ENZYME AND THE ENZYME IMMOBILIZED IN AN ALGINATE SILICA SOL-GEL MATRIX,JOURNAL OF FOOD BIOCHEMISTRY, Issue 1 2000AN-FEI HSU Lipoxygenase (LOX) is an enzyme that regioselectively introduces a hydroperoxide into polyunsaturated fatty acids (PUFA). We recently reported a procedure that immobilizes soybean LOX within an alginate sol-gel matrix. In this study, the kinetic profile of free LOX was compared with that of the sol-gel immobilized LOX. The temperature dependent activity profile of free LOX was optimal at 25C whereas immobilized LOX had optimal activity over the temperature range of 25,35C. Enzyme activity, measured in aqueous buffer, for both the free and immobilized LOX preparations had Km values of 2.5 and 1.40 mmoles/L, respectively, and Vmax values of 0.056 and 0.02 ,mol/min, respectively. The relative rates of oxidation of linoleic acid and acylgfycerols containing linoleoyl residues catalyzed by free and immobilized LOX also were determined The results showed that both free and immobilized LOX favor linoleic acid as a substrate. Relative substrate preference for free LOX was linoleic acid >1-monolinolein > 1,3-dilinolein >trilinolein, and for immobilized LOX was linoleic acid >l, 3-dilinolein >1-monolinolein >trilinolein. In general, LOX immobilized in alginate silica sol-gel matrix retained the physical and chemical characteristics of free LOX. [source] Characterization of Honey AmylaseJOURNAL OF FOOD SCIENCE, Issue 1 2007Sibel Babacan ABSTRACT:, The major ,-amylase in honey was characterized. The optimum pH range and temperature were determined for the enzyme as 4.6 to 5.3 and 55 °C, respectively. The enzyme was stable at pH values from 7 to 8. The half-lives of the purified enzyme at different temperatures were determined. The activation energy for heat inactivation of honey amylase was 114.6 kJ/mol. The enzyme exhibited Michaelis,Menten kinetics with soluble starch and gave KM and Vmax values of 0.72 mg/mL and 0.018 units/mL, respectively. The enzyme was inhibited by CuCl (34.3%), MgCl2 (22.4%), and HgCl2 (13.4%), while CaCl2, MnCl2, and ZnSO4 did not have any effect. Starch had a protective effect on thermal stability of honey amylase. Therefore, it might be critical to process or control the amylase in honey before incorporation into starch-containing foods to aid in the preservation of starch functionality. One step could involve heat treating honey with other ingredients, especially those that dilute and acidify the honey environment. [source] Purification and Characterization of an ,-L-Rhamnosidase from Aspergillus terreus of Interest in WinemakingJOURNAL OF FOOD SCIENCE, Issue 2 2001M.V. Gallego ABSTRACT: An enzyme with ,-L-rhamnosidase activity was purified to homogeneity from a culture filtrate of Aspergillus terreus after growth in a medium containing L-rhamnose as the sole carbon source. The biosynthesis of this enzyme was repressed by glucose. The enzyme had a molecular mass of 96 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an isoelectric point of 4.6 as determined by analytical isoelectric focusing. The pH and temperature optima for the enzyme were found to be 4.0 and 44 °C, respectively. Using p-nitrophenyl-,-L-rhamnopyranoside as a substrate, the enzyme exhibited Michaelis-Menten kinetics with KM and Vmax values of 0.17 mM and 84 U/mg, respectively. The enzyme was inhibited competitively by L-rhamnose (K1 2.5 mM). Divalent cations such as Ca2+ Mg2+ Zn2+ and Co2+ stimulated the a-L-rhamnosidase activity, whereas this was inhibited by Hg2+ and Cd2+. Ethanol (12% v/v) and glucose (21% w/v) decreased enzyme activity by approximately 20%, while this was not affected by SO2. [source] Uptake of lamivudine by rat renal brush border membrane vesiclesJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 1 2002Takatoshi Takubo Uptake of lamivudine, a nucleoside analogue antiviral agent, by brush border membrane vesicles (BBMV) prepared from rat renal cortex was investigated. Initial uptake of lamivudine by BBMV was stimulated in the presence of an outward pH gradient. Determination of the kinetic parameters of the initial uptake yielded apparent Km and Vmax values of 2.28 mM and 1.56 nmol (mg protein),1 (20 s),1, respectively. The pH-driven uptake of lamivudine was inhibited by organic cations such as trimethoprim and cimetidine. The inhibitory effect of trimethoprim on lamivudine uptake was competitive, with an apparent Ki of 27.6 ,M. The uptake of lamivudine was also inhibited by nitrobenzylthioinosine, a representative inhibitor of nucleoside transport, and by other nucleoside analogues, such as azidothymidine and dideoxycytidine, that are excreted by renal tubular secretion. These findings suggest that efflux of lamivudine at the brush border membrane of renal tubular epithelium is mediated by an H+/lamivudine antiport system, which may correspond to the H+/organic cation antiport system, and that this system is also involved in the renal secretion of other nucleoside analogues. [source] Acetaminophen UDP-glucuronosyltransferase in ferrets: species and gender differences, and sequence analysis of ferret UGT1A6JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 6 2001M. H. Court The principal objective of this study was to determine whether ferrets glucuronidate acetaminophen more slowly compared with other species, and if so investigate the molecular basis for the difference. Acetaminophen-UDP-glucuronosyltransferase (UGT) activities were measured using hepatic microsomes from eight ferrets, four humans, four cats, four dogs, rat, mouse, cow, horse, monkey, pig and rabbit. Gender differences between male and female ferret livers were explored using enzyme kinetic analysis. Immunoblotting of microsomal proteins was also performed using UGT-specific antibodies. Finally, the exon 1 region of UGT1A6, a major acetaminophen-UGT, was sequenced. Glucuronidation of acetaminophen was relatively slow in ferret livers compared with livers from all other species except cat. Gender differences were also apparent, with intrinsic clearance (Vmax/Km) values significantly higher in male compared with female ferret livers. Furthermore, Vmax values correlated with densitometric measurements of two protein bands identified with a UGT1A subfamily-specific antibody. No deleterious mutations were identified in the exon 1 or flanking regions of the ferret UGT1A6 gene. In conclusion, like cats, ferret livers glucuronidate acetaminophen relatively slowly. However, unlike cats, in which UGT1A6 is encoded by a pseudogene and dysfunctional, there are no defects in the ferret UGT1A6 gene which could account for the low activity. [source] Enzymatic Hydrolysis of , - and , -Oligo(L -aspartic acid)s by Poly(aspartic acid) Hydrolases-1 and 2 from Sphingomonas sp.MACROMOLECULAR BIOSCIENCE, Issue 3 2004Abstract Summary: The enzymatic hydrolysis of , - and , -oligo(L -aspartic acid)s by PAA hydrolase-1 and PAA hydrolase-2 (purified from Sphingomonas sp. KT-1) was performed to elucidate the mechanism of the microbial degradation by Sphingomonas sp. KT-1 of the thermally synthesized ,,, -poly(D,L -aspartic acid) (tPAA). GPC analysis of the hydrolyzed products of , - and , -tetra(L -aspartic acid)s by PAA hydrolase-1 has showed that PAA hydrolase-1 is capable of hydrolyzing only the specific amide bonds between , -aspartic acid units. The RP-HPLC analysis of the enzymatic hydrolysis of , -oligo(L -aspartic acid)s (4 and 5 mers) by PAA hydrolase-1 has suggested that the enzymatic hydrolysis of , -oligo(L -aspartic acid)s occurs via an endo-mode cleavage. In contrast, PAA hydrolase-2 hydrolyzed both , - and , -oligo(L -aspartic acid)s via an exo-mode cleavage to yield L -aspartic acid as a final product. A kinetic study on the enzymatic hydrolysis of , -oligo(L -aspartic acid)s (3 to 7 mers) by PAA hydrolase-2 has indicated that Km values are almost independent of the number of monomer units in oligomers of 4 to 7 mers, while that Vmax values are markedly dependent on the chain length and show a maximum value at 5 mer. A proposed mechanism of the enzymatic hydrolysis of tPAA by PAA hydrolase-1 and PAA hydrolase-2 in the cell of Sphingomonas sp. KT-1. [source] Properties of wheat bran polyphenol oxidaseMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 1 2004dem Soysal Abstract Polyphenol oxidase (PPO) obtained from wheat bran catalyzed the oxidation of 4-methyl catechol. Phenolic compounds found naturally in crude extract played role as an endogeneous substrate and activity of crude extract needed correction. Activity versus enzyme concentration gave a linear plot at high substrate concentration whereas a nonlinear plot was obtained at low substrate concentration which proved the presence of endogeneous substrate. Adsorption on celite and extraction with polyvinylpyrrolidone (PVPP) caused the removal of phenols. Adsorption of PPO on celite yielded a 4-fold increase in specific activity whereas extraction with PVPP yielded a 2.5-fold increase in specific activity compared to the crude extract. The kinetics of PPO catalyzed oxidation obeyed Michaelis-Menten model; Km and Vmax values were found as 218 mM and 99 ,M/min, respectively. The enzyme was inhibited by ethyl alcohol, dithiothreitol (DTT) and isoproterenol and exhibited heat stability up to a temperature of 90°C. The optimum pH of the enzyme was found to be 5.0. [source] Production, purification and characterisation of a novel halostable xylanase from Bacillus sp.ANNALS OF APPLIED BIOLOGY, Issue 2 2010NTU-0 Bacillus sp. NTU-06 was used to produce xylanase, which is an important industrial enzyme used in the pulp and paper industry. The enzyme was purified by fast protein liquid chromatography (FPLC) and had a molecular mass of 24 kDa. The enzyme was active over a concentration range of 0,20% sodium chloride in culture broth, although its activity was optimal in 5% sodium chloride. A salinity stability test showed that 43% of the enzyme activity was retained after 4 h in 20% sodium chloride. Xylanase activity was maximal at pH 8.0 and 40°C. The enzyme was somewhat thermostable, retaining 20% of the original activity after incubation at 70°C for 4 h. The xylanase had Km and Vmax values of 3.45 mg mL,1 and 387.3 µmol min,1mg,1, respectively. The deduced internal amino acid sequence of Bacillus sp. NTU-06 xylanase resembled the sequence of beta-1,4-endoxylanase, which is a member of glycoside hydrolase family 11. Some of the novel characteristics that make this enzyme potentially effective in xylan biodegradation are discussed. [source] Production and characterization of a recombinant beta-1,4-endoglucanase (glycohydrolase family 9) from the termite Reticulitermes flavipesARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2010Xuguo Zhou Abstract Cell-1 is a host-derived beta-1,4-endoglucanase (Glycohydrolase Family 9 [GHF9]) from the lower termite Reticulitermes flavipes. Here, we report on the heterologous production of Cell-1 using eukaryotic (Baculovirus Expression Vector System; BEVS) and prokaryotic (E. coli) expression systems. The BEVS-expressed enzyme was more readily obtained in solubilized form and more active than the E. coli,expressed enzyme. Km and Vmax values for BEVS-expressed Cell-1 against the model substrate CMC were 0.993% w/v and 1.056,µmol/min/mg. Additional characterization studies on the BEVS-expressed enzyme revealed that it possesses activity comparable to the native enzyme, is optimally active around pH 6.5,7.5 and 50,60°C, is inhibited by EDTA, and displays enhanced activity up to 70°C in the presence of CaCl2. These findings provide a foundation on which to begin subsequent investigations of collaborative digestion by coevolved host and symbiont digestive enzymes from R. flavipes that include GHF7 exoglucanases, GHF1 beta glucosidases, phenol-oxidizing laccases, and others. © 2010 Wiley Periodicals, Inc. [source] Microsomal UDP-Glucuronyltransferase in Rat Liver: Oxidative ActivationBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2005María Eugenia Letelier In this work, we characterize Fe3+/ascorbate-induced activation of UDPGT activity prior to solubilization with Triton X-100 and after the oxidation process provoked the solubilization of the enzyme. We observed a time-dependent increase in UDPGT activity up to 20 min. incubation of the microsomes with Fe3+/ascorbate (3-times); after 20 min. incubation, however, we observed a time-dependent decrease in this activity to basal levels after 4 hr incubation. Treatment of microsomes with 0.1% Triton X-100 (5 min.) lead to a similar increase in UDPGT activity; higher detergent concentrations produced a dose-dependent decrease in this activity to basal levels with 1% Triton X-100. Interestingly, UDPGT activity was susceptible to activation only when associated to microsomal membranes and the loss of activation correlated with the solubilization of this activity. UDPGT activation by either Fe3+/ascorbate or Triton X-100 was correlated with an increase in p -nitrophenol apparent Km and Vmax values. This activation was prevented or reversed by the reducing agents glutathione, cysteine or dithiothreitol when it was induced by the Fe3+/ascorbate. Furthermore, the latter provoked a significant decrease in microsomal thiol content, effect not observed after treatment with Triton X-100. Our results suggest that the main mechanism responsible for Fe3+/ascorbate-induced UDPGT activation is likely to be the promotion of protein sulfhydryl oxidation; this mechanism appears to be different from detergent-induced UDPGT activation. [source] A rapid assay method for catechol- O -methyltransferase activity by flow injection analysisBIOMEDICAL CHROMATOGRAPHY, Issue 4 2002Nozomi Aoyama A rapid assay employing flow injection analysis (FIA) to determine the activity of purified catechol- O -methyltransferase (COMT) from porcine liver is described. The method was based on the determination of normetanephrine, the 3- O -methyl metabolite of the substrate norepinephrine. Excess norepinephrine was removed from the incubation mixture by alumina extraction twice to allow normetanephrine to be subjected to flow injection analysis, coulometrical oxidation, fluorogenic reaction with ethylenediamine and fluorescence detection. Km and Vmax values for COMT obtained with the system were 503,µM and 4.51 nmol/min/mg protein, respectively. The method is suitable for screening of COMT inhibitors or activators, as a large number of samples, up to 200, can be processed in one working day. Copyright © 2002 John Wiley & Sons, Ltd. [source] Multienzyme catalysis in microfluidic biochipsBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2003Moo-Yeal Lee Abstract The attachment of enzymes to glass microfluidic channels has been achieved using a highly reactive poly(maleic anhydride- alt -,-olefin) (PMA)-based coating that is supplied to the microchannel in a toluene solution. The PMA reacts with 3-aminopropyltriethoxysilane groups linked to the glass surface to form a matrix that enables additional maleic anhydride groups to react with free amino groups on enzymes to give a mixed covalent,noncovalent immobilization support. Using a simple T-channel microfluidic design, with reaction channel dimensions of 200 ,m wide (at the center), 15 ,m deep, and 30 mm long giving a reaction volume of 90 nL, soybean peroxidase (SBP) was attached at an amount up to 0.6 ,g/channel. SBP-catalyzed oxidation of p -cresol was performed in aqueous buffer (with 20% [v/v], dimethylformamide) containing H2O2, with microfluidic transport enabled by electroosmotic flow (EOF). Michaelis,Menten kinetics were obtained with Km and Vmax values of 0.98 mM and 0.21 ,mol H2O2 converted/mg SBP per minute, respectively. These values are nearly identical to nonimmobilized SBP kinetics in aqueous,DMF solutions in 20-,L volumes in 384-well plates and 5-mL reaction volumes in 20-mL scintillation vials. These results indicate that SBP displays intrinsically native activity even in the immobilized form at the microscale, and further attests to the mild immobilization conditions afforded by PMA. Bienzymic and trienzymic reactions were also performed in the microfluidic biochip. Specifically, a combined Candida antarctica lipase B,SBP bienzymic system was used to convert tolyl acetate into poly(p -cresol), and an invertase,glucose oxidase SBP trienzymic system was used to take sucrose and generate H2O2 for SBP-catalyzed synthesis of poly(p -cresol). © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 20,28, 2003. [source] |