Home About us Contact | |||
VGLUT2 mRNA (vglut2 + mrna)
Selected AbstractsHeterogeneity of V2-derived interneurons in the adult mouse spinal cordEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007A. Al-Mosawie Abstract Spinal neurons and networks that generate rhythmic locomotor activity remain incompletely defined, prompting the use of molecular biological strategies to label populations of neurons in the postnatal mouse. During spinal cord development, expression of Lhx3 in the absence of Isl1 specifies a V2 interneuronal fate. In this study, postnatal V2-derived interneurons were identified by yellow fluorescent protein (YFP) expression in the double-transgenic offspring of Lhx3Cre/+ × thy1-loxP-stop-loxP-YFP mice. While some motoneurons were labelled, several populations of interneurons predominantly located in lamina VII could also be distinguished. Small interneurons were located throughout the spinal cord whereas larger interneurons were concentrated in the lumbar enlargement. Some V2-derived interneurons were propriospinal, with axons that bifurcated in the lateral funiculus. V2-derived interneurons gave rise to populations of both excitatory and inhibitory interneurons in approximately equal proportions, as demonstrated by in situ hybridization with VGLUT2 mRNA. Immunohistochemical studies revealed YFP+ boutons throughout the spinal cord. Both glutamatergic and glycinergic YFP+ boutons were observed in lamina IX where many apposed motoneuron somata. GABAergic YFP+ boutons were also observed in lamina IX, and they did not form P-boutons. At P0, more than half of the YFP+ interneurons expressed Chx10 and thus were derived from the V2a subclass. In adult mice, there was an increase in Fos expression in V2-derived interneurons following locomotion, indicating that these neurons are active during this behaviour. The heterogeneity of V2-derived interneurons in adult mice indicates that physiologically distinct subpopulations, including last-order interneurons, arise from these embryonically defined neurons. [source] VGLUT1 and VGLUT2 innervation in autonomic regions of intact and transected rat spinal cordTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2007Ida J. Llewellyn-Smith Abstract Fast excitatory neurotransmission to sympathetic and parasympathetic preganglionic neurons (SPN and PPN) is glutamatergic. To characterize this innervation in spinal autonomic regions, we localized immunoreactivity for vesicular glutamate transporters (VGLUTs) 1 and 2 in intact cords and after upper thoracic complete transections. Preganglionic neurons were retrogradely labeled by intraperitoneal Fluoro-Gold or with cholera toxin B (CTB) from superior cervical, celiac, or major pelvic ganglia or adrenal medulla. Glutamatergic somata were localized with in situ hybridization for VGLUT mRNA. In intact cords, all autonomic areas contained abundant VGLUT2-immunoreactive axons and synapses. CTB-immunoreactive SPN and PPN received many close appositions from VGLUT2-immunoreactive axons. VGLUT2-immunoreactive synapses occurred on Fluoro-Gold-labeled SPN. Somata with VGLUT2 mRNA occurred throughout the spinal gray matter. VGLUT2 immunoreactivity was not noticeably affected caudal to a transection. In contrast, in intact cords, VGLUT1-immunoreactive axons were sparse in the intermediolateral cell column (IML) and lumbosacral parasympathetic nucleus but moderately dense above the central canal. VGLUT1-immunoreactive close appositions were rare on SPN in the IML and the central autonomic area and on PPN. Transection reduced the density of VGLUT1-immunoreactive axons in sympathetic subnuclei but increased their density in the parasympathetic nucleus. Neuronal cell bodies with VGLUT1 mRNA occurred only in Clarke's column. These data indicate that SPN and PPN are densely innervated by VGLUT2-immunoreactive axons, some of which arise from spinal neurons. In contrast, the VGLUT1-immunoreactive innervation of spinal preganglionic neurons is sparse, and some may arise from supraspinal sources. Increased VGLUT1 immunoreactivity after transection may correlate with increased glutamatergic transmission to PPN. J. Comp. Neurol. 503:741,767, 2007. © 2007 Wiley-Liss, Inc. [source] Localization of Vesicular Glutamate Transporter 2 mRNA in the Dorsal Root Ganglion of the Pigeon (Columba Livia)ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 6 2009Y. Atoji Summary Our previous study showed localization of glutamate receptor 1 (GluR1) mRNA in neurons of the pigeon spinal cord, suggesting glutamatergic input from intrinsic and extrinsic origins. The present study examined localization of vesicular glutamate transporter 2 (VGLUT2) mRNA to confirm an extrinsic origin of glutamatergic neurons in the dorsal root ganglion (DRG). GluR1 and GluR2 mRNAs were examined in DRG and spinal cord to seek projection regions from VGLUT2 mRNA-expressing neurons. VGLUT2 mRNA was expressed in most DRG neurons and labelling intensity varied from weakly to intensely. Intense VGLUT2 mRNA expression was mainly seen in medium to large neurons. GluR1 and GluR2 mRNAs were expressed in the dorsal horn and GluR2 mRNA signal was also seen in the marginal nucleus. The results suggest that the pigeon DRG has an extrinsic glutamatergic origin that project to the dorsal horn and marginal nucleus of the spinal cord. [source] Glutamatergic neurons are present in the rat ventral tegmental areaEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2007Tsuyoshi Yamaguchi Abstract The ventral tegmental area (VTA) is thought to play an important role in reward function. Two populations of neurons, containing either dopamine (DA) or ,-amino butyric acid (GABA), have been extensively characterized in this area. However, recent electrophysiological studies are consistent with the notion that neurons that utilize neurotransmitters other than DA or GABA are likely to be present in the VTA. Given the pronounced phenotypic diversity of neurons in this region, we have proposed that additional cell types, such as those that express the neurotransmitter glutamate may also be present in this area. Thus, by using in situ hybridization histochemistry we investigated whether transcripts encoded by genes for the two vesicular glutamate transporters, VGluT1 or VGluT2, were expressed in the VTA. We found that VGluT2 mRNA but not VGluT1 mRNA is expressed in the VTA. Neurons expressing VGluT2 mRNA were differentially distributed throughout the rostro-caudal and medio-lateral aspects of the VTA, with the highest concentration detected in rostro-medial areas. Phenotypic characterization with double in situ hybridization of these neurons indicated that they rarely co,expressed mRNAs for tyrosine hydroxylase (TH, marker for DAergic neurons) or glutamic acid decarboxylase (GAD, marker for GABAergic neurons). Based on the results described here, we concluded that the VTA contains glutamatergic neurons that in their vast majority are clearly non-DAergic and non-GABAergic. [source] |