Urogenital Tract (urogenital + tract)

Distribution by Scientific Domains


Selected Abstracts


Generation and expression of a Hoxa11eGFP targeted allele in mice

DEVELOPMENTAL DYNAMICS, Issue 11 2008
Lisa T. Nelson
Abstract Hox genes are crucial for body axis specification during embryonic development. Hoxa11 plays a role in anteroposterior patterning of the axial skeleton, development of the urogenital tract of both sexes, and proximodistal patterning of the limbs. Hoxa11 expression is also observed in the neural tube. Herein, we report the generation of a Hoxa11eGFP targeted knock-in allele in mice in which eGFP replaces the first coding exon of Hoxa11 as an in-frame fusion. This allele closely recapitulates the reported mRNA expression patterns for Hoxa11. Hoxa11eGFP can be visualized in the tail, neural tube, limbs, kidneys, and reproductive tract of both sexes. Additionally, homozygous mutants recapitulate reported phenotypes for Hoxa11 loss of function mice, exhibiting loss of fertility in both males and females. This targeted mouse line will prove useful as a vital marker for Hoxa11 protein localization during control (heterozygous) or mutant organogenesis. Developmental Dynamics 237:3410,3416, 2008. © 2008 Wiley-Liss, Inc. [source]


Tamm-Horsfall protein: a multilayered defence molecule against urinary tract infection

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2005
M. D. Säemann
Abstract Urinary tract infection (UTI) is the most common nonepidemic bacterial infection in humans, representing a constant danger for the host. Both innate and adaptive components of the immune system as well as stromal cells including bladder epithelium are involved in the prevention and clearance of UTI. However, the particular properties of the urogenital tract, which does not comprise typical physical barriers like a mucus or ciliated epithelium, necessitate soluble mediators with potent immunomodulatory capabilities. One candidate molecule capable of both mediating direct antimicrobial activity and alerting immune cells is the evolutionary conserved Tamm-Horsfall protein (THP). Tamm-Horsfall protein is exclusively produced by the kidney in the distal loop of Henle; however, its definite physiological function remains elusive. Mounting evidence indicates that beyond a mere direct antimicrobial activity, THP exerts potent immunoregulatory activity. Furthermore, the genetic ablation of the THP gene leads to severe infection and lethal pyelonephritis in an experimental model of UTI. Recent data are provided demonstrating that THP links the innate immune response with specific THP-directed cell-mediated immunity. In light of these novel findings we discuss the particular role of THP as a specialized defence molecule. We propose an integrated model of protective mechanisms against UTI where THP acts by two principle nonmutually exclusive mechanisms involving the capture of potentially dangerous microbes and the ability of this peculiar glycoprotein to induce robust protective immune responses against uropathogenic bacteria. [source]


Spontaneous neoplasia in the baboon (Papio spp.)

JOURNAL OF MEDICAL PRIMATOLOGY, Issue 2 2007
Rachel E. Cianciolo
Abstract Background, There are several comprehensive reviews of spontaneous neoplasia in non-human primates that compile individual cases or small numbers of cases, but do not provide statistical analysis of tumor incidence, demographics, or epidemiology. Methods, This paper reports all spontaneous neoplasms (n = 363) diagnosed over a 15-year period in a baboon colony with an average annual colony population of 4000. Results, A total of 363 spontaneous neoplasms were diagnosed in 313 baboons: 77 cases were males (25%) and 236 were females (75%); ages ranged from 1 month to 33 years (mean 16.5, median 17). Conclusions, The organ systems affected in descending order of number of neoplasms were hematopoietic organs (n = 101, 28%), urogenital tract (n = 78, 21%), integument (n = 43, 12%), alimentary tract (n = 43, 12%), endocrine organs (n = 40, 11%), nervous system (n = 33, 9%), musculoskeletal system (n = 5, 1%), and respiratory system (n = 4, 1%). Malignant cases numbered 171 (47%); 192 (53%) cases were benign. [source]


Influence of probiotic vaginal lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells

LETTERS IN APPLIED MICROBIOLOGY, Issue 2 2006
G. Zárate
Abstract Aims:, Lactobacilli, the predominant micro-organisms of the vaginal microbiota, play a major role in the maintenance of a healthy urogenital tract by preventing the colonization of pathogenic bacteria. The aim of the present study was to assess the ability of four vaginal Lactobacillus strains, previously selected for their probiotic features, to block in vitro the adherence of three human urogenital pathogens to vaginal epithelial cells (VEC). Methods and Results:, Three types of assays were performed in order to determine the inhibitory effect of lactobacilli on adhesion of urogenital pathogens to VEC: blockage by exclusion (lactobacilli and VEC followed by pathogens), competition (lactobacilli, VEC and pathogens together) and displacement (pathogens and VEC followed by the addition of lactobacilli). Bacterial adhesion to VEC was quantified by microscopy (×1000) after Gram's stain. All the strains were able to inhibit by exclusion and competition the adhesion of Staphylococcus aureus to VEC but none was able to decrease the attachment of Escherichia coli by neither of the mechanisms assayed. Only Lactobacillus acidophillus CRL 1259 and Lactobacillus paracasei CRL 1289 inhibited the attachment of Group B streptococci (GBS) to VEC by exclusion and competition respectively. Conclusions:,Lactobacillus of vaginal origin were able to inhibit the attachment of genitouropathogenic Staph. aureus and GBS to the vaginal epithelium. Significance and Impact of the Study:, The results support the probiotic potential of these Lactobacillus strains as anti-infective agents in the vagina and encourage further studies about their capacity to prevent and manage urogenital tract infections in females. [source]


Sensor Mechanism and Afferent Signal Transduction of the Urinary Bladder: Special Focus on transient receptor potential Ion Channels

LUTS, Issue 2 2010
Masayuki TAKEDA
In the urine storage phase, mechanical stretch stimulates bladder afferents. These urinary bladder afferent sensory nerves consist of small diameter A, - and C-fibers running in the hypogastic and pelvic nerves. Neuroanatomical studies have revealed a complex neuronal network within the bladder wall. The exact mechanisms that underline mechano-sensory transduction in bladder afferent terminals remain ambiguous; however, a wide range of ion channels (e.g. TTX-resistant Na+ channels, Kv channels and hyperpolarization-activated cyclic nucleotidegated cation channels, degenerin/epithelial Na+ channel), and receptors (e.g. TRPV1, TRPM8, TRPA1, P2X2/3, etc.) have been identified at bladder afferent terminals and have implicated in the generation and modulation of afferent signals, which are elcited by a wide range of bladder stimulations including physiological bladder filling, noxious distension, cold, chemical irritation and inflammation. The mammalian transient receptor potential (TRP) family consists of 28 channels that can be subdivided into six different classes: TRPV (Vanilloid), TRPC (Canonical), TRPM (Melastatin), TRPP (Polycystin), TRPML (Mucolipin), and TRPA (Ankyrin). TRP channels are activated by a diversity of physical (voltage, heat, cold, mechanical stress) or chemical (pH, osmolality) stimuli and by binding of specific ligands, enabling them to act as multifunctional sensors at the cellular level. TRPV1, TRPV2, TRPV4, TRPM8, and TRPA1 have been described in different parts of the urogenital tract. Although only TRPV1 among TRPs has been extensively studied so far, more evidence is slowly accumulating about the role of other TRP channels, ion channels, and receptors in the pathophysiology of the urogenital tract, and may provide a new strategy for the treatment of bladder dysfunction. [source]


On the origin of bladder sensing: Tr(i)ps in urology,

NEUROUROLOGY AND URODYNAMICS, Issue 4 2008
Wouter Everaerts
Abstract The mammalian TRP family consists of 28 channels that can be subdivided into 6 different classes: TRPV (vanilloid), TRPC (canonical), TRPM (Melastatin), TRPP (Polycystin), TRPML (Mucolipin), and TRPA (Ankyrin). TRP channels are activated by a diversity of physical (voltage, heat, cold, mechanical stress) or chemical (pH, osmolality) stimuli and by binding of specific ligands, enabling them to act as multifunctional sensors at the cellular level. Currently, a lot of scientific research is devoted to these channels and their role in sensing mechanisms throughout the body. In urology, there's a growing conviction that disturbances in afferent (sensory) mechanisms are highly important in the pathogenesis of functional problems. Therefore, the TRP family forms an interesting new target to focus on. In this review we attempt to summarize the existing knowledge about TRP channels in the urogenital tract. So far, TRPV1, TRPV2, TRPV4, TRPM8, and TRPA1 have been described in different parts of the urogenital tract. Although only TRPV1 (the vanilloid receptor) has been extensively studied so far, more evidence is slowly accumulating about the role of other TRP channels in the (patho)physiology of the urogenital tract. Neurourol. Urodynam. 27:264,273, 2008. © 2007 Wiley-Liss, Inc. [source]


Normal and abnormal development of the urogenital tract

PRENATAL DIAGNOSIS, Issue 11 2001
Peter M. Cuckow
Abstract An understanding of the normal development of the urogenital tract, at both the structural and molecular level, gives an insight into the mechanisms involved in renal pathology. In this review we will outline embryology of normal and abnormal renal development and discuss the function of some of the key regulatory molecules which have been described recently. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Dynamic urinary proteomic analysis reveals stable proteins to be potential biomarkers

PROTEOMICS - CLINICAL APPLICATIONS, Issue 3 2009
Wei Sun
Abstract Human urinary proteome analysis is a convenient and efficient approach for understanding disease processes affecting the kidney and urogenital tract. Many potential biomarkers have been identified in previous differential analyses; however, dynamic variations of the urinary proteome have not been intensively studied, and it is difficult to conclude that potential biomarkers are genuinely associated with disease rather then simply being physiological proteome variations. In this paper, pooled and individual urine samples were used to analyze dynamic variations in the urinary proteome. Five types of pooled samples (first morning void, second morning void, excessive water-drinking void, random void, and 24,h void) collected in 1,day from six volunteers were used to analyze intra-day variations. Six pairs of first morning voids collected a week apart were used to study inter-day, inter-individual, and inter-gender variations. The intra-day, inter-day, inter-individual, and inter-gender variation analyses showed that many proteins were constantly present with relatively stable abundances, and some of these had earlier been reported as potential disease biomarkers. In terms of sensitivity, the main components of the five intra-day urinary proteomes were similar, and the second morning void is recommended for clinical proteome analysis. The advantages and disadvantages of pooling samples are also discussed. The data presented describe a pool of stable urinary proteins seen under different physiological conditions. Any significant qualitative or quantitative changes in these stable proteins may mean that such proteins could serve as potential urinary biomarkers. [source]


Regulation of urogenital smooth muscle patterning by testosterone and estrogen during prostatic induction

THE PROSTATE, Issue 7 2006
Holly Chrisman
Abstract Background Smooth muscle (SM) has been proposed to play an important role in controlling prostate organogenesis by regulating signaling between inductive mesenchyme and developing epithelial prostatic buds. Methods We have examined the effects of testosterone and estrogen upon SM patterning in the embryonic rat urogenital tract (UGT) using in vitro organ cultures, immunohistochemistry, and Western blotting. Results We observed that testosterone elicited a sexually dimorphic difference in SM structure of embryonic UGTs, in cultures grown with testosterone. The addition of estrogen led to an increase in the rate of SM closure, in both males and females. To quantify the effects of steroids upon SM we used Western blotting of SM actin, which showed that estrogen stimulated SM content, while testosterone reduced SM content. Finally, we examined the expression of ER,, ER,, PR, and SM actin under different hormonal treatments of UGTs grown in vitro. The expression patterns of ER, and ER, were largely unchanged by hormonal treatment, while PR showed a much broader expression pattern in response to estradiol. Conclusions Our results indicate that testosterone can directly regulate SM patterning and content in the UGT, and that SM is sensitive to both androgens and estrogens. © 2006 Wiley-Liss, Inc. [source]


Extragenital subcutaneous cellular angiofibroma,

APMIS, Issue 3 2007
Case report
Cellular angiofibroma (CAF) is a rare distinctive mesenchymal neoplasm that occurs almost exclusively in the genital area. We report the case of a 38-year-old woman who presented with an asymptomatic subcutaneous mass, 3.5 cm in diameter, located in the left hypochondrium, which had progressively enlarged during the previous 6 months. The lesion was completely excised. No recurrence was observed 3 months after the excision. A review of the literature,and including the present report,revealed five cases (three men and two women) with location outside the urogenital tract. Mean age was 57 (range 38,78) years; mean 41 years for women and 68 years for men. Average tumor size was 9 (range 3.5,25) cm; mean 5 cm for women and 12 cm for men. Tumors were located in the superficial soft tissue of the trunk, except for one case in the retroperitoneum. Mean follow-up was 29 (range 3,102) months, and no patient developed recurrence or metastasis. Extragenital CAF, except for location, shows similar clinicopathological features to genital CAF. Simple tumorectomy appears to be adequate treatment. Morphologically, CAF is closely related to spindle cell lipoma. [source]


Gase als zelluläre Signalstoffe.

BIOLOGIE IN UNSERER ZEIT (BIUZ), Issue 3 2010
Gasotransmitter
Abstract Die Gase Stickoxid (NO), Kohlenmonoxid (CO) und Schwefelwasserstoff (H2S) werden aufgrund ihrer Wirkung als Signalstoffe als "Gasotransmitter" zusammengefasst. Diese Gase spielen eine wichtige Rolle als intra- und interzellulärer Signalstoff im Verdauungs-, Atmungs- oder Urogenitalsystem, bei der Steuerung des Herzschlags oder Nervenaktivitäten. Die Forschung ist dabei, Funktionen und weitere Details der Wirkmechanismen dieser Gase und ihre Implikationen für Physiologie, Pathophysiologie und Pharmakologie zu erarbeiten. Vom bisher neuesten Kandidaten , dem H2S , gibt es Hinweise, dass er in hoher Konzentration im Gehirn und in den Hoden vorkommt und bei Lern-/Gedächtnisprozessen sowie bei Geschlechtsfunktionen eine Rolle spielt. Durch Entwicklung von Wirksubstanzen zur Beeinflussung der H2S-Produktion oder entsprechender Zielorte könnte sich hieraus ein interessantes pharmakologisches Potenzial entwickeln. Gasotransmitters , gases as cellular signalling molecules The gases nitric oxide (NO), carbon monoxide (CO) and hydrogen sulphide (H2S) because of their capacity as signalling molecules have been now collectively termed "gasotransmitters". These gases play an important role in inter- and intracellular signalling, as in the digestive, respiratory or urogenital tract, in controlling heart activity or in nerve function. Research now tries to work out functions and further details about the mechanism of action of these gases and their implications for physiology, pathophysiology and pharmacology. The most recent candidate, H2S, is found in high concentrations in the brain and in the testis and hence is involved in learning/memory and in reproductive functions. The development of new substances interfering with the production of H2S or its targets may constitute an interesting pharmacological potential. [source]


A novel role of CXCR4 and SDF-1 during migration of cloacal muscle precursors

DEVELOPMENTAL DYNAMICS, Issue 6 2010
Rizwan Rehimi
Abstract The cloaca acts as a common chamber into which gastrointestinal and urogenital tracts converge in lower vertebrates. The distal end of the cloaca is guarded by a ring of cloacal muscles or sphincters, the equivalent of perineal muscles in mammals. It has recently been shown that the development of the cloacal musculature depends on hindlimb muscle formation. The signaling molecules responsible for the outward migration of hindlimb myogenic precursors are not known. Based on the expression studies for CXCR4 and SDF-1, we hypothesized a role of this signaling pair during cloacal muscle precursor migration. The aim of our study was to investigate the role of SDF-1/CXCR4 during cloacal muscle precursor migration in the chicken embryos. We show that SDF-1 is expressed in the cloacal region, and by experimentally manipulating the SDF-1/CXCR4 signaling, we can show that SDF-1 guides the migration of CXCR4-expressing cloacal muscle precursors. Developmental Dynamics 239:1622,1631, 2010. © 2010 Wiley-Liss, Inc. [source]


Mutational screening of the CYP26A1 gene in patients with caudal regression syndrome,

BIRTH DEFECTS RESEARCH, Issue 2 2006
Patrizia De Marco
Abstract BACKGROUND The retinoic acid (RA),catabolizing enzyme Cyp26a1 plays an important role in protecting tailbud tissues from inappropriate exposure to RA. Cyp26a1 -null animals exhibit caudal agenesis and spina bifida, imperforate anus, agenesis of the caudal portions of the digestive and urogenital tracts, and malformed lumbosacral skeletal elements. This phenotype closely resembles the most severe form of caudal agenesis in humans. In view of these findings, we investigated a potential involvement of the human CYP26A1 gene in the pathogenesis of caudal regression syndrome (CRS). METHODS Mutational screening of 49 CRS patients and 132 controls was performed using denaturing high-performance liquid chromatography and sequencing. Differences in the genotype and allele frequency of each SNP were evaluated by ,2 analysis. The biological significance of the intronic variants was investigated by transfection assays of mutant constructs and by analysis of the splicing patterns with RT-PCR. RESULTS Mutational screening allowed us to identify 6 SNPs, 4 of which (447C>G, 1134G>A, IVS1+10G>C, and IVS4+8AG>GA) are new. In addition, we describe a novel 2-site haplotype consisting of the 2 intronic SNPs. Both single-locus and haplotype analyses revealed no association with increased risk for CRS. The consequences of the 2 intronic polymorphisms on the mRNA splicing process were also investigated. Moreover, using functional and computational methods we demonstrated that both of these intronic polymorphisms affect the intron splicing efficiency. CONCLUSIONS Our research did not provide evidence that CYP26A1 has implications for the pathogenesis of human CRS. However, the relationship between CRS risk and the CYP26A1 genotype requires further study with a larger number of genotyped subjects. Birth Defects Research (Part A), 2006. © 2006 Wiley-Liss, Inc. [source]