Urban Impacts (urban + impact)

Distribution by Scientific Domains


Selected Abstracts


Do cities export biodiversity?

DIVERSITY AND DISTRIBUTIONS, Issue 1 2008
Traffic as dispersal vector across urban, rural gradients
ABSTRACT Urban areas are among the land use types with the highes richness in plant species. A main feature of urban floras is the high proportion of non-native species with often divergent distribution patterns along urban,rural gradients. Urban impacts on plant species richness are usually associated with increasing human activity along rural-to-urban gradients. As an important stimulus of urban plant diversity, human-mediated seed dispersal may drive the process of increasing the similarity between urban and rural floras by moving species across urban,rural gradients. We used long motorway tunnels as sampling sites for propagules that are released by vehicles to test for the impact of traffic on seed dispersal along an urban,rural gradient. Opposite lanes of the tunnels are separated by solid walls, allowing us to differentiate seed deposition associated with traffic into vs. out of the city. Both the magnitude of seed deposition and the species richness in seed samples from two motorway tunnels were higher in lanes leading out of the city, indicating an ,export' of urban biodiversity by traffic. As proportions of seeds of non-native species were also higher in the outbound lanes, traffic may foster invasion processes starting from cities to the surrounding landscapes. Indicator species analysis revealed that only a few species were confined to samples from lanes leading into the city, while mostly species of urban habitats were significantly associated with samples from the outbound lanes. The findings demonstrate that dispersal by traffic reflects different seed sources that are associated with different traffic directions, and traffic may thus exchange propagules along the urban,rural gradient. [source]


Remarkable Amphibian Biomass and Abundance in an Isolated Wetland: Implications for Wetland Conservation

CONSERVATION BIOLOGY, Issue 5 2006
J. WHITFIELD GIBBONS
biodiversidad; declinación de anfibios; recuperación de humedales sequía; uso de suelo Abstract:,Despite the continuing loss of wetland habitats and associated declines in amphibian populations, attempts to translate wetland losses into measurable losses to ecosystems have been lacking. We estimated the potential productivity from the amphibian community that would be compromised by the loss of a single isolated wetland that has been protected from most industrial, agricultural, and urban impacts for the past 54 years. We used a continuous drift fence at Ellenton Bay, a 10-ha freshwater wetland on the Savannah River Site, near Aiken, South Carolina (U.S.A.), to sample all amphibians for 1 year following a prolonged drought. Despite intensive agricultural use of the land surrounding Ellenton Bay prior to 1951, we documented 24 species and remarkably high numbers and biomass of juvenile amphibians (>360,000 individuals; >1,400 kg) produced during one breeding season. Anurans (17 species) were more abundant than salamanders (7 species), comprising 96.4% of individual captures. Most (95.9%) of the amphibian biomass came from 232095 individuals of a single species of anuran (southern leopard frog[Rana sphenocephala]). Our results revealed the resilience of an amphibian community to natural stressors and historical habitat alteration and the potential magnitude of biomass and energy transfer from isolated wetlands to surrounding terrestrial habitat. We attributed the postdrought success of amphibians to a combination of adult longevity (often >5 years), a reduction in predator abundance, and an abundance of larval food resources. Likewise, the increase of forest cover around Ellenton Bay from <20% in 1951 to >60% in 2001 probably contributed to the long-term persistence of amphibians at this site. Our findings provide an optimistic counterpoint to the issue of the global decline of biological diversity by demonstrating that conservation efforts can mitigate historical habitat degradation. Resumen:,A pesar de la pérdida de hábitats de humedales y las declinaciones asociadas de poblaciones de anfibios, se han realizado pocos intentos para traducir las pérdidas de humedales en pérdidas mensurables en los ecosistemas. Estimamos la productividad potencial de la comunidad de anfibios que se afectaría por la pérdida de un humedal aislado que ha estado protegido de los impactos industriales, agrícolas y urbanos durante los últimos 54 años. Utilizamos un cerco de desvío en la Bahía Ellentonn, un humedal dulceacuícola de 10 ha en el Río Savannah, cerca de Aiken, Carolina del Sur (E.U.A.), para muestrear todos los anfibios durante 1 año después de una sequía prolongada. A pesar del intensivo uso agrícola del suelo alrededor de la Bahía Ellenton antes de 1951, documentamos 24 especies y números y biomasa de anfibios juveniles notablemente altos (>360,000 individuos; >1,400 kg) en una temporada reproductiva. Los anuros (17 especies) fueron más abundantes que las salamandras (7 especies), y comprendieron 96.4% de las capturas individuales. La mayor parte (95.9%) de la biomasa provino de 232095 individuos de una sola especie de anuro (Rana sphenocephala). Nuestros resultados revelaron que la resiliencia de la comunidad de anfibios a los estresantes naturales y a la alteración histórica del hábitat y la magnitud potencial de la transferencia de biomasa y energía desde los humedales aislados hacia el hábitat terrestre circundante. Atribuimos el éxito post-sequía de los anfibios a una combinación de longevidad de adultos (a menudo > 5 años), la reducción de la abundancia de depredadores y la abundancia de recursos alimenticios para las larvas. Asimismo, el incremento de la cobertura forestal alrededor de la Bahía Ellerton de < 20% en 1951 a > 60% en 2001 probablemente contribuyó a la persistencia de los anfibios a largo plazo en este sitio. Nuestros hallazgos proporcionan un contrapunto optimista al tema de la declinación global de la diversidad biológica al demostrar que los esfuerzos de conservación pueden mitigar a la degradación histórica del hábitat. [source]


Effects of sequential depositional basins on lake response to urban and agricultural pollution: a palaeoecological analysis of the Qu'Appelle Valley, Saskatchewan, Canada

FRESHWATER BIOLOGY, Issue 3 2000
Aruna S. Dixit
1. Palaeolimnological analyses of fossil diatoms and pigments were conducted in four lakes of the Qu'Appelle Valley, Saskatchewan, Canada, to quantify the effect of upstream depositional basins on lake response to urban and agricultural human activities. Pasqua, Echo, Mission and Katepwa lakes exhibit similar modern limnological characteristics, lie sequentially downstream from urban point sources of growth-limiting nitrogen (N), yet drain similarly large areas of farmland (38,40 × 103 km2). 2. Analyses indicated that all lakes were naturally productive, contained eutrophic diatoms (i.e. Stephanodiscus niagarae, S. hantzchii, S. parvus and Aulacoseira granulata), and supported blooms of colonial (as myxoxanthophyll) and potentially toxic N-fixing cyanobacteria (aphanizophyll), even prior to the onset of European settlement (ca. 1890) and urban development (ca. 1930). 3. The onset of agricultural practices ca. 1890 had only modest effects on algal communities in the Qu'Appelle lakes, with subtle increases in eutrophic diatom species (Pasqua, Mission and Katepwa lakes) and 25,50% increases in pigment-inferred algal abundance (Echo, Mission and Katepwa lakes). 4. Despite naturally high production, total algal abundance (,-carotene) in upstream Pasqua Lake increased by more than 350% after intense urbanization beginning ca. 1930, while eutrophic diatoms became more common and cyanobacteria populations increased ten-fold. Principal components analysis (PCA) explained 64% of diatom variance, and identified three eras corresponding to baseline, pre-agricultural communities (1776,1890), an era of high production (ca. 1925,1960) and recent variable community composition following tertiary treatment of urban sewage (ca. 1977,1990). 5. Analyses of three downstream lakes demonstrated that urban impacts following 1930 remained evident in fossil profiles of ,-carotene and myxoxanthophyll, but that large blooms of N-fixing cyanobacteria were restricted to the past 25 years at downstream Mission and Katepwa lakes. Similarly, PCA showed that fossil diatom assemblages exhibited little directional variation until the 1970s. 6. Together, these analyses support the hypothesis that upstream lakes were effective at reducing the impacts of point-source urban nutrients on downstream lakes. In contrast, diffuse agricultural activities had only limited impacts on water quality and these were less well ameliorated by upstream basins. [source]


Comparison of sympatric freshwater turtle populations from an urbanized Sydney catchment

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 7 2008
Shelley Burgin
Abstract 1.Australian freshwater turtles are widely distributed throughout the continent, and in each river catchment there are at least two taxa. In south-eastern Australia Chelodina longicollis and forms of Emydura macquarii co-habit within a waterway, although they have been shown to partition habitat within the water column in non-urban bodies of water. Limited comparative data are available for the urban populations. 2.Within urban Sydney C. longicollis (eastern long-necked turtle) and Emydura macquarii dharuk (Sydney short-necked turtle) share habitat. However, in contrast with non-urban studies of C. longicollis and other sympatric E. macquarii taxa, it was observed that the population profile of the two species was similar at all sites, and that C. longicollis were present in greater numbers than E. m. dharuk. 3.The continued degradation of preferred habitat, low recruitment, and potential competition from introduced turtles place both species in a precarious position. 4.The shallow, impounded waterways of the regulated urban bodies of water align more closely with the preferred habitat of C. longicollis than with that of forms of E. macquarii, which prefer deeper flowing waters or large wetlands adjacent to rivers. Emydura m. dharuk may be at greatest risk of extinction in urban areas. 5.Across urban Sydney, the low numbers of E. m. dharuk compared with C. longicollis may be due to the lack of mobility of E. m. dharuk such that individuals tend to be stranded in sub-optimal habitat. In contrast, C. longicollis has a greater propensity for overland movement, and a preference for the ,new habitat' resulting from urban impacts on the associated waterways, and thus appears to be able to utilize these modified urban waters more successfully. Copyright © 2008 John Wiley & Sons, Ltd. [source]