Uranium

Distribution by Scientific Domains
Distribution within Chemistry

Terms modified by Uranium

  • uranium mining

  • Selected Abstracts


    Hydrothermal Preparation of Nickel(II)/Uranium(IV) Fluorides with One-, Two-, and Three-Dimensional Topologies.

    CHEMINFORM, Issue 28 2003
    Amanda C. Bean
    Abstract For Abstract see ChemInform Abstract in Full Text. [source]


    Adsorptive Stripping Voltammetric Determination of Trace Uranium with a Bismuth-Film Electrode Based on the U(VI),U(V) Reduction Step of the Uranium-Cupferron Complex

    ELECTROANALYSIS, Issue 3 2006
    Georgia Kefala
    Abstract This work reports the use of adsorptive stripping voltammetry (AdSV) for the determination of uranium on a preplated rotating-disk bismuth-film electrode (BiFE). The principle of the method relied on the complexation of U(VI) ions with cupferron and the subsequent adsorptive accumulation of the complex on the surface of the BiFE. The uranium in the accumulated complex was then reduced by means of a cathodic voltammetric scan while the analytically useful U(VI),U(V) reduction signal was monitored. The experimental variables as well as potential interferences were investigated and the figures of merit of the method were established. Using the selected conditions, the 3, limit of detection for uranium was 0.1,,g L,1 at a preconcentration time of 480,s and the relative standard deviation was 4.7% at the 5,,g L,1 level for a preconcentration time of 120,s (n=8). The accuracy of the method was established by analyzing a reference sea water sample. [source]


    Edaphic and physiographic factors affecting the distribution of natural gamma-emitting radionuclides in the soils of the Arnás catchment in the Central Spanish Pyrenees

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2002
    A. Navas
    Summary Gamma-emitting radionuclides are a natural source of radiation that can be a concern for human health, therefore it is important to know the radionuclide backgrounds in soils and to assess their mobility and transfer in ecosystems. Concentrations of natural radionuclides were determined in soils from a small catchment in the middle mountain environment of the Central Spanish Pyrenees. Radioisotope activities were well within the natural ranges for soil, averaging 27, 26, 32 and 500 Bq kg,1 for 238U, 226Ra, 208Tl and 40K, respectively. Their distributions in the soil profile were analysed along three transects of contrasting physiography and soil type. Uranium was depleted in upper layers of the soil and slightly enriched in deeper sections, while 226Ra, 40K and 208Tl were more uniformly distributed. Radionuclide activities in the Calcaric Regosols on the shrub slope were less than those in the deeper and better developed Haplic Kastanozems under forest and in Calcaric Fluvisols in the valley bottom. These spatial patterns seem to be affected by the soil type; other landscape features, such as slope orientation and vegetation cover, appeared to have an indirect effect. The results indicate that the depth distribution of the radionuclides is affected by some soil properties, including pH, carbonates, organic matter and particle size, and soil processes, such as leaching and adsorption. [source]


    Uranium and thorium isotopes in the rivers of the Amazonian basin: hydrology and weathering processes

    HYDROLOGICAL PROCESSES, Issue 1 2003
    Aguinaldo N. Marques Jr.
    Abstract Two expeditions (October 1989 and May 1992) were carried out to two points of the main Amazon River channel and four tributaries. The Solimões and Madeira rivers, taking their origin in the Andes, are whitewater rivers. The Negro River is a typical acid, blackwater river. The Trombetas River flows through bauxite-rich areas, and is characterized by low concentrations of dissolved humic substances. The 238U, 234U, 232Th and 230Th activities were recorded from dissolved, suspended particulate phases and river bank sediments. The latter were analysed for their 226Ra, 228Ra and 210Pb contents, and also subjected to leaching with 0·2 M hydroxylamine,hydrochloride solution to determine the concentrations of radionuclides bound to amorphous Fe hydroxides and Mn oxides and hydroxides. The dissolved U average concentration in the Amazon system is ten times lower than the mean world river concentration. The uranium concentration observed at Óbidos in the lower Amazon (0·095 µg L,1), where the U content in the river bank sediments and suspended matter is lowest, suggests U release from the solid phase during river transport. About 485 t of U are transported annually to the Amazon delta area in dissolved form, and 1943 t bound to suspended particulate matter. Total U and Th concentrations in the river bank sediments ranged from 1·59 to 7·14 µg g,1 and from 6·74 to 32 µg g,1, respectively. The highest concentrations were observed in the Trombetas River. The proportion extracted by means of the hydroxylamine solution (HL) was relatively high for U in the Trombetas river bank sediment (31%) and for Th in the Solimões sediment (30%). According to the alpha recoil effects, the 234U/238U activity ratios of the Andean river waters and downstream Amazon water (Óbidos) were >1, but were <1 in the Negro River (at Manaus). The activity ratios of dissolved U correlate with pH and also with the U activity ratios in the river bank sediment hydroxylamine extracts. As expected, the 234U/238U activity ratios in river bank sediments were <1 in the Andean rivers and in the downstream Amazon, but they were >1 in the Trombetas and Negro rivers. Such ratios probably result from the binding of dissolved uranium to solid sediment. The 228Th/232Th ratios of river bank sediments were close to unity (except for the Negro River, where it is lower), suggesting no significant Th exchanges between the river water and the sediment. The 226Ra/232Th activity ratios were <1, and the 226Ra/228Ra activity ratios generally were significantly higher than the activity ratios of their respective parents. This perhaps is the result of easier leaching of the 226Ra parent, 230Th, from solid material (owing to the alpha recoil effect) than of the 228Ra parent. Uranium and thorium isotopes were used as tools to evaluate the chemical weathering rate of rocks in the Amazon system, which was estimated to be 2·7 cm 1000 year,1 s,1. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Innentitelbild: Neptunium Diverges Sharply from Uranium and Plutonium in Crystalline Borate Matrixes: Insights into the Complex Behavior of the Early Actinides Relevant to Nuclear Waste Storage (Angew. Chem.

    ANGEWANDTE CHEMIE, Issue 7 2010
    7/2010)
    Eine große Sammlung von kristallinen Uran-, Neptunium- und Plutoniumboraten wurde synthetisiert, um zu untersuchen, wie sich das chemische Verhalten dieser benachbarten Elemente unterscheiden könnte. In der Zuschrift auf S.,1285,ff. berichten T.,E. Albrecht-Schmitt et,al. über das höchst ungewöhnliche Verhalten von Neptunium, das mehrere schichtförmige Neptunylborate mit nanoskaligen Strukturen bildet, die Np in den Oxidationsstufen +IV, +V und +VI enthalten. Die Eigenschaften dieser Verbindungen stehen im scharfen Gegensatz zu denen der Uran- und Plutoniumspezies, die lediglich UVI oder PuVI aufweisen. [source]


    Neptunium Diverges Sharply from Uranium and Plutonium in Crystalline Borate Matrixes: Insights into the Complex Behavior of the Early Actinides Relevant to Nuclear Waste Storage,

    ANGEWANDTE CHEMIE, Issue 7 2010
    Shuao Wang
    Anders als die anderen: Neptuniumborate unterscheiden sich von Uran- und Plutoniumboraten: Sie liegen als gemischtvalente Verbindungen mit jeweils dreierlei Koordinationsumgebungen und Oxidationstufen vor (siehe Bild; Polyeder: NpIV hellblau, NpV dunkelblau, NpVI grün, B gelb; Kugeln: O rot, K oder Ba blau). [source]


    Australia's Quest to Enrich Uranium and the Whitlam Government's Loans Affair

    AUSTRALIAN JOURNAL OF POLITICS AND HISTORY, Issue 4 2008
    Wayne Reynolds
    The renewed debate about Australia enriching uranium raises issues associated with a previous attempt thirty-five years ago. The Atomic Energy Commission hatched plans in the mid-1960s to position Australia as a supplier of enriched fuel, especially to the Japanese market. This would be done using centrifuge technology, a cheaper and more efficient method than that used by the United States. That fact, along with concerns in Washington to restrict the proliferation of nuclear weapons, led to opposition to rival enrichment programs. Whitlam and Connor miscalculated here. Ratifying the Nuclear Non-proliferation Treaty was not enough to stay opposition to raising a loan designed mainly to give Australia an enrichment program. [source]


    Uranium Provinces in China

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2000
    CHEN Zhaobo
    Abstract, Three uranium provinces are recognized in China, the Southeast China uranium province, the Northeast China-Inner Mongolia uranium province and the Northwest China (Xinjiang) uranium province. The latter two promise good potential for uranium resources and are major exploration target areas in recent years. There are two major types of uranium deposits: the Phanerozoic hydrothermal type (vein type) and the Meso-Cenozoic sandstone type in different proportions in the three uranium provinces. The most important reason or prerequisite for the formation of these uranium provinces is that Precambrian uranium-enriched old basement or its broken parts (median massifs) exists or once existed in these regions, and underwent strong tectonomagmatic activation during Phanerozoic time. Uranium was mobilized from the old basement and migrated upwards to the upper structural level together with the acidic magma originating from anatexis and the primary fluids, which were then mixed with meteoric water and resulted in the formation of Phanerozoic hydrothermal uranium deposits under extensional tectonic environments. Erosion of uraniferous rocks and pre-existing uranium deposits during the Meso-Cenozoic brought about the removal of uranium into young sedimentary basins. When those basins were uplifted and slightly deformed by later tectonic activity, roll-type uranium deposits were formed as a result of redox in permeable sandstone strata. [source]


    ChemInform Abstract: Neptunium Diverges Sharply from Uranium and Plutonium in Crystalline Borate Matrixes: Insights into the Complex Behavior of the Early Actinides Relevant to Nuclear Waste Storage.

    CHEMINFORM, Issue 16 2010
    Shuao Wang
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


    ChemInform Abstract: Reinvestigation of the Uranium(3.5+) Rare-Earth Oxysulfides "(UO)2LnS3" (Ln: Yb, Y).

    CHEMINFORM, Issue 46 2009
    Geng Bang Jin
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


    ChemInform Abstract: Preparation and Melting of Uranium from U3O8.

    CHEMINFORM, Issue 22 2008
    Jin-Mok Hur
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


    ChemInform Abstract: Coordination of a Uranium(IV) Sulfate Monomer in an Aqueous Solution and in the Solid State.

    CHEMINFORM, Issue 20 2008
    Christoph Hennig
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


    Critical Role of Water Content in the Formation and Reactivity of Uranium, Neptunium, and Plutonium Iodates under Hydrothermal Conditions: Implications for the Oxidative Dissolution of Spent Nuclear Fuel.

    CHEMINFORM, Issue 30 2007
    Travis H. Bray
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


    ChemInform Abstract: A Structural and Vibrational Study of Uranium(III) Molecules by Density Functional Methods.

    CHEMINFORM, Issue 49 2001
    Laurent Joubert
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


    Photoluminescence of Uranium(VI): Quenching Mechanism and Role of Uranium(V)

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 27 2010
    Satoru Tsushima Dr.
    Abstract The photoluminescence of uranium(VI) is observed typically in the wavelength range 400,650,nm with the lifetime of several hundreds ,s and is known to be quenched in the presence of various halide ions (case,A) or alcohols (case,B). Here, we show by density functional theory (DFT) calculations that the quenching involves an intermediate triplet excited state that exhibits uranium(V) character. The DFT results are consistent with previous experimental findings suggesting the presence of photoexcited uranium(V) radical pair during the quenching process. In the ground state of uranyl(VI) halides, the ligand contributions to the highest occupied molecular orbitals increase with the atomic number (Z) of halide ion allowing larger ligand-to-metal charge transfer (LMCT) between uranium and the halide ion. Consequently, a larger quenching effect is expected as Z increases. The quenching mechanism is essentially the same in cases,A and B, and is driven by an electron transfer from the quencher to the UO22+ entity. The relative energetic stabilities of the triplet excited state define the "fate" of uranium, so that in case,A uranium(V) is oxidized back to uranium(VI), while in case,B uranium remains as pentavalent. [source]


    Adsorptive Stripping Voltammetric Determination of Trace Uranium with a Bismuth-Film Electrode Based on the U(VI),U(V) Reduction Step of the Uranium-Cupferron Complex

    ELECTROANALYSIS, Issue 3 2006
    Georgia Kefala
    Abstract This work reports the use of adsorptive stripping voltammetry (AdSV) for the determination of uranium on a preplated rotating-disk bismuth-film electrode (BiFE). The principle of the method relied on the complexation of U(VI) ions with cupferron and the subsequent adsorptive accumulation of the complex on the surface of the BiFE. The uranium in the accumulated complex was then reduced by means of a cathodic voltammetric scan while the analytically useful U(VI),U(V) reduction signal was monitored. The experimental variables as well as potential interferences were investigated and the figures of merit of the method were established. Using the selected conditions, the 3, limit of detection for uranium was 0.1,,g L,1 at a preconcentration time of 480,s and the relative standard deviation was 4.7% at the 5,,g L,1 level for a preconcentration time of 120,s (n=8). The accuracy of the method was established by analyzing a reference sea water sample. [source]


    Determination of uranium, iron, copper, and nickel from ore samples by MEKC using N,N,-ethylene bis(salicylaldimine) as complexing reagent

    ELECTROPHORESIS, Issue 3 2008
    Muhammed Aslam Mirza
    Abstract An analytical procedure has been developed for the separation of dioxouranium(VI), iron(III), copper(II), nickel(II), cobalt(II), cobalt(III), palladium(II), and thorium(IV) by MEKC using N,N,-ethylene bis(salicylaldimine) (H2SA2en) as a complexing reagent with total runtime <4.5,min. SDS was used as micellar medium at pH,8 with sodium tetraborate buffer (0.1,M). An uncoated fused-silica capillary with an effective length of 50,cm×75,,m id was used with an applied voltage of 30,kV with photodiode array detection at 231,nm. Linear calibrations were obtained within 0.111,1000,,g/mL of each element with LODs within 37,325,ng/mL. The developed method was tested for analysis of uranium ore samples indicating its presence within 103,1789,,g/g with RSD within 0.79,1.87%. Likewise copper, nickel, and iron in their combined matrix were also simultaneously determined with RSD 0.4,1.6% (n,=,6). [source]


    Hexavalent uranium supports growth of Anaeromyxobacter dehalogenans and Geobacter spp. with lower than predicted biomass yields

    ENVIRONMENTAL MICROBIOLOGY, Issue 11 2007
    Robert A. Sanford
    Summary The stimulation of bacteria capable of reducing soluble U(VI) to sparingly soluble U(IV) is a promising approach for containing U(VI) plumes. Anaeromyxobacter dehalogenans is capable of mediating this activity; however, its ability to couple U(VI) reduction to growth has not been established. Monitoring the increase in 16S rRNA gene copy numbers using quantitative real-time PCR (qPCR) in cultures provided with U(VI) as an electron acceptor demonstrated growth, and 7.7,8.6 × 106 cells were produced per ,mole of U(VI) reduced. This biomass yield was lower than predicted based on the theoretical free energy changes associated with U(VI)-to-U(IV) reduction. Lower than predicted growth yields with U(VI) as electron acceptor were also determined in cultures of Geobacter lovleyi and Geobacter sulfurreducens suggesting that U(VI) reduction is inefficient or imposes an additional cost to growing cells. These findings have implications for U(VI) bioremediation because Anaeromyxobacter spp. and Geobacter spp. contribute to radionuclide immobilization in contaminated subsurface environments. [source]


    Molecular diversity and characterization of nitrite reductase gene fragments (nirK and nirS) from nitrate- and uranium-contaminated groundwater

    ENVIRONMENTAL MICROBIOLOGY, Issue 1 2003
    Tingfen Yan
    Summary Nitrate-contaminated groundwater samples were analysed for nirK and nirS gene diversity. The samples differed with respect to nitrate, uranium, heavy metals, organic carbon content, pH and dissolved oxygen levels. A total of 958 nirK and 1162 nirS clones were screened by restriction fragment length polymorphism (RFLP) analysis: 48 and 143 distinct nirK and nirS clones, respectively, were obtained. A single dominant nirK restriction pattern was observed for all six samples and was 83% identical to the Hyphomicrobium zavarzinii nirK gene. A dominant nirS pattern was observed for four of the samples, including the background sample, and was 95% identical to the nirS of Alcaligenes faecalis. Diversity indices for nirK and nirS sequences were not related to any single geochemical characteristic, but results suggested that the diversity of nirK genes was inversely proportional to the diversity of nirS. Principal component analysis (PCA) of the sites based on geochemistry grouped the samples by low, moderate and high nitrate but PCA of the unique operational taxonomic units (OTUs) distributions grouped the samples differently. Many of the sequences were not closely related to previously observed genes and some phylogenetically related sequences were obtained from similar samples. The results indicated that the contaminated groundwater contained novel nirK and nirS sequences, functional diversity of both genes changed in relation to the contaminant gradient, but the nirK and nirS functional diversity was affected differently. [source]


    Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments

    ENVIRONMENTAL MICROBIOLOGY, Issue 9 2002
    Kevin T. Finneran
    Summary Microbiological reduction of soluble U(VI) to insoluble U(IV) has been proposed as a remediation strategy for uranium-contaminated groundwater. Nitrate is a common co-contaminant with uranium. Nitrate inhibited U(VI) reduction in acetate-amended aquifer sediments collected from a uranium-contaminated site in New Mexico. Once nitrate was depleted, both U(VI) and Fe(III) were reduced concurrently. When nitrate was added to sediments in which U(VI) had been reduced, U(VI) reappeared in solution. Parallel studies with the dissimilatory Fe(III)-, U(VI)- and nitrate-reducing microorganism, Geobacter metallireducens, demonstrated that nitrate inhibited reduction of Fe(III) and U(VI) in cell suspensions of cells that had been grown with nitrate as the electron acceptor, but not in Fe(III)-grown cells. Suspensions of nitrate-grown G. metallireducens oxidized Fe(II) and U(IV) with nitrate as the electron acceptor. U(IV) oxidation was accelerated when Fe(II) was also added, presumably due to the Fe(III) being formed abiotically oxidizing U(IV). These studies demonstrate that although the presence of nitrate is not likely to be an impediment to the bioremediation of uranium contamination with microbial U(VI) reduction, it is necessary to reduce nitrate before U(VI) can be reduced. These results also suggest that anaerobic oxidation of U(IV) to U(VI) with nitrate serving as the electron acceptor may provide a novel strategy for solubilizing and extracting microbial U(IV) precipitates from the subsurface. [source]


    Fixation of heavy contaminants of a dirty bomb attack: Studies with uranium and metal simulants

    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 1 2007
    Thomas L. McGehee
    Abstract Asphalt emulsions were evaluated as a means to immobilize radiological contaminants deposited on urban surfaces after a dirty bomb attack. Contaminated surfaces would be sprayed with thin coatings of asphalt emulsion to encapsulate the radioactive particles until the site can be safely remediated. This research investigated applications of an asphalt emulsion (Topein C, Encapco Technologies, LLC, Napa, CA) to treat (zero-valent) iron, lead, and uranium powders on various building material surfaces. Initial studies found that some of the building materials (limestone, concrete, and metal) reacted with the emulsion producing gas bubbles, which formed 0.001 to 1 cm vesicles in the cured asphalt emulsion. These vesicles, however, did not expose the building material surface, and the reaction appeared to aid in the setting of the emulsion. Powdered lead did not react with the asphalt emulsion, but iron powder and uranium did. Iron powder and the emulsion formed vesicles up to 0.5 mm (but not exposing the building material surface), while the uranium (U3O8) had a moderate reaction when compared with to the lead and iron powders. Scanning electron micrographs showed that the lead powder formed nonreactive layers adjacent to the concrete surface while iron particles were evenly distributed in the asphalt matrix due to the reaction with the asphalt, indicating that the physical and chemical reactions between the iron metal particles, asphalt, and concrete affected particle distribution in the asphalt matrix. A vertical operation sediment tube was used to determine the flowing shear stress durability of the asphalt/metal/substrate complex. The asphalt treatment with iron had no loss at the shear range tested (0.1,2.5 Pa), while the asphalt stabilized powdered lead lost 8% asphalt and lead at 2.5 Pa mean shear stress applied for 5 h. The chemical reaction between asphalt emulsion and iron increased the resistance of the asphalt/metal/substrate complex to shear when compared with lead. Some hydrogen was formed in reactions with iron, but the amount formed was well below the lower flammability limit. Treatment of uranium indicated that the emulsion was effective at reducing leaching of the uranium 10 fold. These experiments indicate that asphalt emulsions may be a viable means for containing metallic or dense radiological contaminants on common building materials. © 2007 American Institute of Chemical Engineers Environ Prog 26:94,103, 2007 [source]


    Phosphate regulates uranium(VI) toxicity to Lemna gibba L. G3

    ENVIRONMENTAL TOXICOLOGY, Issue 1 2007
    Martin Mkandawire
    Abstract The influence of phosphate on the toxicity of uranium to Lemna gibba G3 was tested in semicontinuous culture with synthetic mine water developed as an analogue of surface water of two abandoned uranium mining and ore processing sites in Saxony, Germany. Six concentrations of uranium were investigated under five different supply regimes of PO43, at constant pH (7.0 ± 0.5) and alkalinity (7.0 ± 1.6 mg L,1 total CO32,). The results showed significant inhibition of specific growth rates in cultures exposed to the highest uranium concentrations (3500 and 7000 ,g U L,1) at lowest PO43, supply of 0.01 mg L,1. An increase of phosphate concentration from 0.01 to 8.0 mg L,1 resulted in an increase of EC50 from 0.9 ± 0.2 to 7.4 ± 1.9 mg L,1 (significant with Student's t test, P > 0.05). The accumulation of uranium in L. gibba increased exponentially with the increase in uranium concentration in cultures with 0.01 and 0.14 mg PO43, L,1. Accumulation also increased significantly when PO43, supply was increased from 0.14 to 1.36 mg PO43, L,1 for all uranium concentrations. However, as the supply of PO43, gradually increased from 1.36 to 8.0 mg PO43, L,1, uranium bioaccumulation increased slightly but insignificantly before leveling off. Uranium speciation modeling with PhreeqC geochemical code predicted increases in the proportions of uranyl phosphate species when PO43, concentrations increase in the media. Most of these uranyl phosphate species have a high probability of precipitation [saturation indices (SI) > 0.93]. Therefore, the alleviation of uranium toxicity to L. gibba with phosphates is due to interactions among components of the media, mainly uranyl and phosphate which results in precipitation. Consequently, bioavailable fractions of uranium to L. gibba are reduced. This might explain lack of consistent EC50 values for uranium to most aquatic organisms. © 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 9,16, 2007. [source]


    Bioassays with caged Hyalella azteca to determine in situ toxicity downstream of two Saskatchewan, Canada, uranium operations,

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2007
    Erin L. Robertson
    Abstract The main objectives of this in situ study were to evaluate the usefulness of an in situ bioassay to determine if downstream water bodies at the Key Lake and Rabbit Lake uranium operations (Saskatchewan, Canada) were toxic to Hyalella azteca and, if toxicity was observed, to differentiate between the contribution of surface water and sediment contamination to in situ toxicity. These objectives were achieved by performing 4-d in situ bioassays with laboratory-reared H. azteca confined in specially designed, paired, surface water and sediment exposure chambers. Results from the in situ bioassays revealed significant mortality, relative to the respective reference site, at the exposure sites at both Key Lake (p , 0.001) and Rabbit Lake (p = 0.001). No statistical differences were found between survival in surface water and sediment exposure chambers at either Key Lake (p = 0.232) or Rabbit Lake (p = 0.072). This suggests that surface water (the common feature of both types of exposure chambers) was the primary cause of in situ mortality of H. azteca at both operations, although this relationship was stronger at Key Lake. At Key Lake, the primary cause of aquatic toxicity to H. azteca did not appear to be correlated with the variables measured in this study, but most likely with a pulse of organic mill-process chemicals released during the time of the in situ study , a transient event that was caused by a problem with the mill's solvent extraction process. The suspected cause of in situ toxicity to H. azteca at Rabbit Lake was high levels of uranium in surface water, sediment, and pore water. [source]


    Bioavailability and microbial adaptation to elevated levels of uranium in an acid, organic topsoil forming on an old mine spoil

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2007
    Erik Jautris Joner
    Abstract An old mine spoil at a 19th-century mining site with considerable residues of uranium (400,800 mg U/kg) was investigated with respect to U concentrations in soil and plants and tolerance to U in the soil microbial community in order to describe the bioavailability of U. Measurements of soil fractions representing water-soluble U, easily exchangeable U, and U bound to humified organic matter showed that all fractions contained elevated concentrations of U. Plant U concentrations were only 10 times higher at the mine spoil site compared to the reference site (3 mg U/kg vs 0.3 mg U/kg), while the most easily available soil fractions contained 0.18 to 0.86 mg U/kg soil at the mine spoil. An ecotoxicity bioassay using incorporation of [3H]thymidine into the indigenous microbial communities of the two soils in the presence of increasing U concentrations showed that microorganisms at the mining site were sensitive to U but also that they had acquired a substantial tolerance toward U (EC50, the effective concentration reducing activity by 50% of UO2 -citrate was , 120 ,M as compared to 30 ,M in the reference soil). In the assay, more than 40% of the microbial activity was maintained in the presence of 1 ,M UO2-citrate versus 3% in the reference soil. We conclude that U-enriched mining waste can contain sufficiently elevated concentrations of bioavailable U to affect indigenous microorganisms and that bioavailable U imposes a selection pressure that favors the development of a highly uranium-tolerant microbial community, while plant uptake of U remains low. [source]


    Developmental effects of bioaccumulated selenium in eggs and larvae of two salmonid species

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2005
    Jodi Holm
    Abstract Elevated concentrations of Se have been detected in cold, flowing water habitats near uranium and coal mines in Canada. Fish from these systems have concentrations of Se in their tissues that exceed toxic effect thresholds that have been established for warm-water fishes. However, the applicability of toxic effect thresholds and guidelines to cold water, lotic habitats is a matter of contention in the literature since most cases of Se toxicosis have been documented in standing, warm-water systems. To examine the possibility of impaired reproduction in wild rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) near coal mining activity in the northeastern slopes region of Alberta, Canada, spawn from both species were collected from exposure and reference sites. Gametes were fertilized in the laboratory, reared to the swim-up stage, and examined for deformities. A significant relationship was observed for rainbow trout between the amount of Se in eggs and the incidence of developmental abnormalities, specifically craniofacial defects, skeletal deformities, and edema. These associations approximate exponential functions with probabilities that 15% of the population would be affected occurring between 8.8 and 10.5 ,g Se per gram of wet egg weight, based on probit analysis. These relationships are similar to those described for centrarchids inhabiting a seleniferous warm-water lake. No such relationships were established for brook trout. [source]


    Effect of carbon dioxide on uranium bioaccumulation in the freshwater clam Corbicula fluminea

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2004
    Damien Tran
    Abstract This paper presents the results of a study examining the impact of CO2 variations in water on uranium bioaccumulation in the bivalve Corbicula fluminea. The objectives were to evaluate the effect of CO2 on bivalve behavior (valve activity and ventilation rate) that are related to bioaccumulation and on the bioavailability of uranium carbonate complexes to the bivalve. It was demonstrated that at a total inorganic carbon concentration of CCO2 = 276 ,mol/L, the daily valve opening duration and ventilation rate are significantly (p < 0.05) lower than those obtained at 27.6 ,mol/L (-28 and -47%, respectively). For both CCO2 values, exposure to uranium at 0.25 ,mol/L had no impact on valve activity; however, ventilation decreased significantly compared to the reference condition, down to the same lower level for the two CCO2 conditions. Consequently, the quantity of uranium passing through the bivalve was identical for both CCO2 conditions. Thus, bivalve ventilatory and valve activity could not explain increased bioaccumulation in the gills and mantle measured under the low-CCO2 condition. Consequently, we suggest that the quantity of carbonate bound to the U fraction must be less bioavailable than other U species such as the free-ion UO2+2, which is in accordance with the biotic ligand model. [source]


    Source of toxicity in storm water: Zinc from commonly used paint

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2004
    Lynn Adams Kszos
    Abstract A Department of Energy site in Paducah, Kentucky (USA), stores thousands of cylinders of depleted uranium hexa-fluoride. Breaches of the cylinders could result in the release of uranium and hydrogen fluoride. Beginning in 1996, a program was begun to paint the cylinders in order to prevent corrosion of the cylinders and the surfaces of the storage yards were converted to concrete. In 1998, storm water from the cylinder storage yards was found to be toxic to Ceriodaphnia, at concentrations exceeding limits in the site's discharge permit. A six-month study was conducted to identify the source of the toxicity in the storm water. Ceriodaphnia toxicity tests with the storm water resulted in 48-h median lethal concentrations (LC50) ranging from 12 to 94%; zinc concentrations in the storm water ranged from 0.08 to 0.54 mg/L. Acute toxicity tests with zinc and linear regression identified that zinc concentrations in the storm water were sufficient to account for the toxicity observed. By tracking the sources to the discharge point, newly painted cylinders were identified as the source of the zinc in the storm water. Rainwater collected directly from the painted cylinders contained up to 13 mg Zn/L. Laboratory and field tests showed that topcoating the cylinders would reduce the amount of zinc in the runoff from the cylinders. [source]


    Effects of depleted uranium on the health and survival of Ceriodaphnia dubia and Hyalella azteca

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2002
    Wendy W Kuhne
    Abstract Depleted uranium (DU) has been used as a substitute for the fissionable enricheduranium component of atomic weapons tested at Los Alamos National Laboratory (LANL) (Los Alamos, NM, USA) since the early 1950s, resulting in considerable concentrations of DU in the soils within the test sites. Although the movement of DU into major aquatic systems has been shown to be minimal, there are many small-order ephemeral streams and areas of standing water in canyons throughout LANL that may be affected by inputs of DU via runoff, erosion, and leaching. Ninety-six-hour acute and 7-d chronic toxicity assays were conducted to measure the toxicity of DU on survival and reproduction of Ceriodaphnia dubia. A 14-d water-only assay was conducted to measure survival and growth of Hyalella azteca. The estimated median lethal concentration (LC50) to produce 50% mortality of the test population for the 96-h Ceriodaphnia dubia assay was 10.50 mg/L. Reproductive effects occurred at a lowest-observable-effect concentration ,3.91 mg/L with a no-observable-effect concentration of 1.97 mg/L. The estimated 14-d LC50 for the Hyalella azteca assay was 1.52 mg/L. No significant relationship was detected between growth and DU concentrations. Concentrations at which toxicity effects were observed in this study for both invertebrates exceeded concentrations of total uranium observed in runoff from LANL lands. Thus, it is likely that current runoff levels of uranium do not pose a threat to these types of aquatic invertebrates. [source]


    Effect of housing factors and surficial uranium on the spatial prediction of residential radon in Iowa

    ENVIRONMETRICS, Issue 5 2007
    Brian J. Smith
    Abstract Growing epidemiologic evidence suggests that residential radon is an important risk factor for lung cancer. Consequently, public health professionals have expressed interest in characterizing the spatial distribution of radon concentrations in order to identify geographic regions of high exposure. Ambient radon concentrations are a function of geologic features including soil radium content. Indoor radon concentrations can vary based on building characteristics that affect the entry of radon into the building and movement between rooms therein. We present a geostatistical hierarchical Bayesian model for radon that allows for spatial prediction based on geologic data and housing characteristics. Our model is applied to radon data from an epidemiologic study in Iowa that consist of 136 outdoor measurements and 2590 indoor measurements from 614 residential homes. Housing characteristics collected in the Iowa Study are included as predictors in the model. Geologic data in the form of county-average surficial uranium concentrations from the USGS National Uranium Resource Evaluation project are also considered. A ,change of support' approach is implemented to combine the radon measurements, collected at points in space, and the uranium concentrations, averaged over counties, so that point-source concentrations for the latter are available for the analysis. Estimates of the effect of select housing factors on radon are provided along with spatial maps of predicted radon concentrations in Iowa. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Direct luminescence chronology of the Epipaleolithic Kebaran site of Nahal Hadera V, Israel

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 4 2003
    D.I. Godfrey-Smith
    We report direct luminescence ages for the culture-bearing sediments of the Kebaran site of Nahal Hadera V (NHV) in the coastal plain of Israel. Although the site contains, in addition to rich lithic deposits, plentiful mammalian bone, it has proved to be undatable using radiocarbon dating, in spite of the fact that the cultural context places the time of occupation well within the range of radiocarbon dating. In contrast, luminescence dating of the site sediments proved successful. Luminescence ages were determined using the single aliquot additive-dose (SAA) method, applied to sand-sized quartz extracts to determine past equivalent doses (De). Dose rates (R) were calculated using thick source alpha counting for the uranium (U) and thorium (Th) concentrations and x-ray fluorescence analysis for the potassium (K20) concentration. Of the five samples collected at the site, four represent cultural and subcultural deposits and the fifth represents the geological substrate for the archaeological deposit, a quartz-rich, carbonate-cemented dune sand known as aeolianite or kurkar. The luminescence age of the kurkar is 42.7 ± 6.3 ka. Human occupation of the site occurred between 21.3 ka and 14.0 ka ago, during the Last Glacial Maximum. © 2003 Wiley Periodicals, Inc. [source]