Upwelling

Distribution by Scientific Domains
Distribution within Earth and Environmental Science

Kinds of Upwelling

  • coastal upwelling

  • Terms modified by Upwelling

  • upwelling area
  • upwelling ecosystem
  • upwelling intensity
  • upwelling system

  • Selected Abstracts


    Spatial patterns of water surface topography at a river confluence

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2002
    Dr Pascale M. Biron
    Abstract Understanding flow structures in river confluences has largely been the product of interpretations made from measured flow velocity data. Here, we turn the attention to the investigation of the patterns of both the average and standard deviations of the micro-topography of the water surface at an asymmetrical natural discordant confluence for different flow conditions. Water surface topography is measured using a total station to survey the position of a reflector mounted on a custom-built raft. To limit error problems related to changes in the water level, measurements are taken and analysed by cross-stream transects where five water surface profiles are taken before moving to the next transect. Three-dimensional numerical simulations of the flow dynamics at the field site are used to examine predicted water surface topography for a steady-state situation. The patterns are interpreted with respect to flow structure dynamics, visual observations of boils, and bed topography. Results indicate that coherent patterns emerge at the water surface of a discordant bed confluence for different flow conditions. The zone of stagnation and the mixing layer are characterized by super-elevation, a lateral tilt is present at the edge of the mixing layer, and a zone of super-elevation is present on the tributary side at the downstream junction corner. The latter seems associated with periodical upwelling and is not present in the numerical simulations that do not take into account instantaneous velocity fluctuations. Planform curvature, topographic steering related to the tributary mouth bar, and turbulent structures associated with the mixing layer all play a key role in the pattern of both the average and standard deviation of the water surface topography at confluences. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    From small-scale habitat loopholes to decadal cycles: a habitat-based hypothesis explaining fluctuation in pelagic fish populations off Peru

    FISH AND FISHERIES, Issue 4 2004
    Arnaud Bertrand
    Abstract The Peru-Humboldt Current system (HCS) supports the world's largest pelagic fisheries. Among the world's eastern boundary current systems, it is the most exposed to high climatic stress and is directly affected by El Niño and La Niña events. In this volatile ecosystem, fish have been led to develop adaptive strategies in space and time. In this paper, we attempt to understand the mechanisms underlying such strategies, focusing on the El Niño 1997,98 in Peru from which an extensive set of hydrographic, capture and acoustic survey data are available. An integrated analysis of the data is crucial, as each has substantial shortcomings individually; for example, both catch data and acoustic surveys may easily lead to wrong conclusions. Existing hypotheses on anchovy and sardine alternations lead us to a ,habitat-based' synthetic hypothesis. Using our data, an integrated approach evaluated how fish responded to habitat variation, and determined the consequences in terms of fish-population variability. Various factors occurring at a range of different spatio-temporal scales were considered: interdecadal regime (warm ,El Viejo'/cool ,La Vieja' decadal scale); strength and the duration of the El Niño Southern Oscillation event (interannual scale); population condition before the event (interannual scale); fishing pressure and other predation (annual scale); changes in reproductive behaviour (intra-annual scale); presence of local upwelling (local scale). During El Niño 1997,98, anchovy was able to exploit a small-scale temporal and spatial ,loophole' inside the general unfavourable conditions. Moreover, sardine did not do better than anchovy during this El Niño and was not able to take advantage of the ,loophole' opened by this short-term event. Our results question the traditional view that El Niño is bad for anchovy and good for sardine. [source]


    Creation of artificial upwelling areas for brown trout, Salmo trutta, spawning in still water bodies

    FISHERIES MANAGEMENT & ECOLOGY, Issue 5 2006
    Å. BRABRAND
    Abstract, Brown trout, Salmo trutta L., spawning sites were constructed by creating areas of artificial upwelling water, 252 ± 37 mL m,2 min,1 (95% CL), through appropriately sized spawning gravel substrate in 3 m2 vessels buried in the bottom of a 150-m2 pond. Natural spawning occurred in the vessels during autumn 2001,2004, with hatching and alevin swim up the following spring. In areas of upwelling, egg survival was 85,95%, while no live eggs were observed in areas without upwelling. In areas with upwelling, the maximum density of live eggs at the eyed stage was 570,1510 eggs m,2. In spring 2004 and 2005, the density of alevins was estimated at 322 (±187) m,2 and 567 (±217) m,2, respectively, in areas with upwelling water, compared with 35.2 ± 25.4 m,2 in areas without upwelling water in 2004. [source]


    Fish habitat requirements as the basis for rehabilitation of eutrophic lakes by oxygenation

    FISHERIES MANAGEMENT & ECOLOGY, Issue 3-4 2004
    R. Müller
    Abstract Eutrophic lakes often suffer from hypolimnetic oxygen depletion during summer and autumn, and the accumulation of reduced substances in the hypolimnion. The space fish can occupy is therefore reduced, and the potential for fish kills caused by toxic algae and the upwelling of anoxic water increases. Fish, such as coregonids, require at least 4 mg O2 L,1 to survive in the long-term. This critical level has been postulated as one of the major goals for the rehabilitation of several eutrophic Swiss lakes. It was predicted that this oxygen criterion would reduce phosphorus release from the sediment and increase phosphorus retention, and re-establish natural reproduction of coregonids. Rehabilitation measures applied to three eutrophic Swiss lakes were hypolimnetic oxygenation during summer stratification, and artificial mixing using compressed air to enhance circulation in winter. These lake-internal measures carried out for more than 15 years showed the 4 mg O2 L,1 criterion can be achieved most of the time. The measures have led to an expansion of habitat for oxygen-dependent organisms to greater depths. However, other goals were not attained, such as increasing phosphorus retention by the sediment. In addition, natural reproduction of coregonids could not be re-established. Excessive oxygen consumption by the sediment, arising from the decomposition of deposited organic matter produced during summer, caused death by suffocation of coregonid eggs developing on the sediment. Thus rehabilitation of eutrophic lakes by oxygenating the hypolimnion and artificial mixing will not be successful, unless it is accompanied by lowering the nutrient loading and thus primary production and oxygen consumption by the sediment. Nevertheless, positive effects of lake aeration were the expansion of living space for fish and benthic invertebrates, and the prevention of fish kills by upwelling anoxic hypolimnetic water. [source]


    Hypoxia-based habitat compression of tropical pelagic fishes

    FISHERIES OCEANOGRAPHY, Issue 6 2006
    ERIC D. PRINCE
    Abstract Large areas of cold hypoxic water occur as distinct strata in the eastern tropical Pacific (ETP) and Atlantic oceans as a result of high productivity initiated by intense nutrient upwelling. We show that this stratum restricts the depth distribution of tropical pelagic marlins, sailfish, and tunas by compressing the acceptable physical habitat into a narrow surface layer. This layer extends downward to a variable boundary defined by a shallow thermocline, often at 25 m, above a barrier of cold hypoxic water. The depth distributions of marlin and sailfish monitored with electronic tags and average dissolved oxygen (DO) and temperature profiles show that this cold hypoxic environment constitutes a lower habitat boundary in the ETP, but not in the western North Atlantic (WNA), where DO is not limiting. Eastern Pacific and eastern Atlantic sailfish are larger than those in WNA, where the hypoxic zone is much deeper or absent. Larger sizes may reflect enhanced foraging opportunities afforded by the closer proximity of predator and prey in compressed habitat, as well as by the higher productivity. The shallow band of acceptable habitat restricts these fishes to a very narrow surface layer and makes them more vulnerable to over-exploitation by surface gears. Predictably, the long-term landings of tropical pelagic tunas from areas of habitat compression have been far greater than in surrounding areas. Many tropical pelagic species in the Atlantic Ocean are currently either fully exploited or overfished and their future status could be quite sensitive to increased fishing pressures, particularly in areas of habitat compression. [source]


    Annual cycle of clupeiform larvae around Gran Canaria Island, Canary Islands

    FISHERIES OCEANOGRAPHY, Issue 4 2006
    P. BÉCOGNÉE
    Abstract The distribution and abundance of fish larvae was studied along the eastern and southern shelf of Gran Canaria Island (Canary Islands) from July 2000 to June 2001. Oblique bongo hauls were carried out fortnightly during the daytime, coinciding with days of full and new moon. During February, the area was sampled every 2,5 days. About 17.3% of the ichthyoplanktonic community was composed of clupeiform larvae: 92.9% of these larvae were Sardinella aurita, whereas 4.7% and 2.4% were respectively Engraulis encrasicolus and Sardina pilchardus. Sardinella aurita larvae appeared during the whole year with two periods of maximum abundance: June to September and December to February. During the full moon their abundance was on average 38.5% (±6.8%) of their numbers during the new moon, showing a clear lunar periodicity. Engraulis encrasicolus larvae appeared from November to March, also coinciding with the new moon. Sardina pilchardus larvae only appeared during two short periods, both coinciding with filaments shed from the African coastal upwelling which reached the island. This fact confirms the transport of fish larvae from the upwelling area off northwest Africa to the Canary Islands, promoting a genetic flow among both sites. [source]


    Tracking environmental processes in the coastal zone for understanding and predicting Oregon coho (Oncorhynchus kisutch) marine survival

    FISHERIES OCEANOGRAPHY, Issue 6 2003
    E.A. Logerwell
    Abstract To better understand and predict Oregon coho (Oncorhynchus kisutch) marine survival, we developed a conceptual model of processes occurring during four sequential periods: (1) winter climate prior to smolt migration from freshwater to ocean, (2) spring transition from winter downwelling to spring/summer upwelling, (3) the spring upwelling season and (4) winter ocean conditions near the end of the maturing coho's first year at sea. We then parameterized a General Additive Model (GAM) with Oregon Production Index (OPI) coho smolt-to-adult survival estimates from 1970 to 2001 and environmental data representing processes occurring during each period (presmolt winter SST, spring transition date, spring sea level, and post-smolt winter SST). The model explained a high and significant proportion of the variation in coho survival (R2 = 0.75). The model forecast of 2002 adult survival rate ranged from 4 to 8%. Our forecast was higher than predictions based on the return of precocious males (,jacks'), and it won't be known until fall 2002 which forecast is most accurate. An advantage to our environmentally based predictive model is the potential for linkages with predictive climate models, which might allow for forecasts more than 1 year in advance. Relationships between the environmental variables in the GAM and others (such as the North Pacific Index and water column stratification) provided insight into the processes driving production in the Pacific Northwest coastal ocean. Thus, coho may be a bellwether for the coastal environment and models such as ours may apply to populations of other species in this habitat. [source]


    Implications of interannual variability in euphausiid population biology for fish production along the south-west coast of Vancouver Island: a synthesis

    FISHERIES OCEANOGRAPHY, Issue 1 2002
    R. W. Tanasichuk
    This is a synthesis of published and unpublished research on euphausiid and fish populations using the south-west coast of Vancouver Island. Overall, the studies covered 1985,98, when there were two ENSO events and considerable variation in upwelling. The population biology of the dominant euphausiids (Thysanoessa spinifera, Euphausiapacifica) was monitored during 1991,98. The species abundance trends differed. Results of simple correlation analyses suggested that variations in temperature, salinity and upwelling do not explain variations in the abundance of larval or adult euphausiids, or in the abundance of portions of euphausiid populations on which fish feed. I found significant interannual variations in daily ration of the dominant planktivorous fish species, but euphausiids remained the most important prey. Pacific hake (Merluccius productus), the dominant planktivore, fed on larger (>17 mm) T. spinifera, even though the biomass of this part of the euphausiid biomass decreased by 75% between 1991 and 1997, but Pacific herring (Clupea pallasi) may have begun feeding on smaller E. pacifica. Therefore, any study of the relationship between fish production and krill biology must consider that part of the euphausiid biomass exploited by fish. In addition, some fish species and/or life history stages appeared to adapt to changes in euphausiid availability, while others did not. Such variation in adaptations also has to be described and considered to understand how changes in euphausiid biology affect fish productivity. [source]


    The influence of mesoscale ocean processes on anchovy (Engraulis encrasicolus) recruitment in the Bay of Biscay estimated with a three-dimensional hydrodynamic mode

    FISHERIES OCEANOGRAPHY, Issue 2 2001
    G. Allain
    The relationship between anchovy (Engraulis encrasicolus) recruitment in the Bay of Biscay and environmental variables during their planktonic phase (March to July) was investigated from 1986 to 1997. Meteorological variables (wind and temperature) are forcing effects on the sea, but they are not thought to be processes that govern larval survival directly. Food-web dynamics are believed to be more closely linked to larval survival and are related to the physical vertical water column structure. Therefore, we used a three-dimensional (3D) hydrodynamic model to characterize three major physical mesoscale processes affecting vertical structure in south-east Biscay: stratification, upwelling and river plume extent. Indices were estimated from the model outputs to characterize and quantify the space/time evolution of these structures during the period March to July. A multiple linear regression analysis was then used to analyse hierarchy in the explanatory power of the physical indices. Coastal upwelling and shelf stratification breakdown indices were the most significant explanatory variables, with positive and negative effect on recruitment, respectively. A model with these two indices explains 75% of the recruitment variability of anchovy observed in the period 1987,96. [source]


    Mid-latitude wind stress: the energy source for climatic shifts in the North Pacific Ocean

    FISHERIES OCEANOGRAPHY, Issue 3 2000
    Parrish
    Analyses of atmospheric observations in the North Pacific demonstrate extensive decadal-scale variations in the mid-latitude winter surface wind stress. In the decade after 1976 winter, eastward wind stress doubled over a broad area in the central North Pacific and the winter zero wind stress curl line was displaced about 6° southward. This resulted in increased southward Ekman transport, increased oceanic upwelling, and increased turbulent mixing as well as a southward expansion of the area of surface divergence. All these factors contributed to a decadal winter cold anomaly along the subtropical side of the North Pacific Current. In summer the cold anomaly extended eastward, almost reaching the coast of Oregon. The increased gradient in wind stress curl and southward displacement of the zero curl line also resulted in an increase in total North Pacific Current transport, primarily on the Equator side of this Current. Thus, surface water entering the California Current was of more subtropical origin in the post-1976 decade. Southward (upwelling favourable) wind stress and sea surface temperature (SST) in the area off San Francisco exhibit at least three different types of decadal departures from mean conditions. In association with the 1976 climatic shift, marine fishery production in the Oyashio, California and Alaska Currents altered dramatically, suggesting that these natural environmental variations significantly alter the long-term yields of major North Pacific fisheries. [source]


    Cretaceous,Tertiary geodynamics: a North Atlantic exercise

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2001
    Trond H. Torsvik
    Summary New reconstructions are presented for the Cretaceous,Early Tertiary North Atlantic using a combination of palaeomagnetic, hotspot and magnetic anomaly data. We utilize these reconstructions in an analysis of previously described misfits between the North Atlantic Plate elements at successive intervals during this time period. We are able to achieve reasonable overlap between the hotspot and palaeomagnetic reconstructions between 40 and 95 Ma and thus are able to support the idea that the Indo,Atlantic hotspots are relatively stationary. Small, but systematic discrepancies for this time interval can readily be modelled with a long-term, octopole non-dipole field contribution (G3 = g30/g10 = 0.08). However, hotspot and palaeomagnetic reconstructions for the Early Cretaceous North Atlantic show substantial differences that cannot be explained by constant, non-dipole fields and we favour an explanation for these discrepancies in terms of true polar wander (TPW) triggered by mantle instabilities between 125 and 95 Ma; this constitutes the only identifiable event of significant TPW since the Early Cretaceous. Taken in the context of available geochronological and geological data and seismic tomography from the region, the 95,40 Ma reconstructions and their time-consequent geological products are interpreted in terms of specific conditions of mantle-crust coupling and global plate motions/tectonic activity. Highlights from these reconstructions show uniform NE movement of the coupled North American, Greenland and Eurasian plates from 95 to 80 Ma; a marked cusp in the paths for all three elements at 80 Ma where the three plates simultaneously change direction and follow a uniform NW-directed motion until c. 20 Ma when Eurasia diverges NE, away from the still-NW-moving Greenland and North American elements. Positioning of the Iceland plume beneath the spreading-ridge at 20 Ma may have increased upwelling below the ridge, increased the ridge-push, and caused a NE shift in the absolute direction of Eurasia. [source]


    Crustal structure of central and northern Iceland from analysis of teleseismic receiver functions

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2000
    Fiona A. Darbyshire
    We present results from a teleseismic receiver function study of central and northern Iceland, carried out during the period 1995,1998. Data from eight broad-band seismometers installed in the SIL network operated by the Icelandic Meteorological Office were used for analysis. Receiver functions for each station were generated from events for a wide range of backazimuths and a combination of inversion and forward modelling was used to infer the crustal structure below each station. The models generated show a considerable variation in the nature and thickness of the crust across Iceland. The thinnest crust (20,21 km) is found in the northern half of the Northern Volcanic Zone approximately 120 km north of the centre of the Iceland mantle plume. Thicker crust (24,30 km) is found elsewhere in northern and central Iceland and the thickest crust (37 km) is found close to the plume centre. Velocity,depth profiles show a distinct division of the crust into two main sections, an upper high-velocity-gradient section of thickness 2,8 km and a lower crustal section with small or zero overall velocity gradient. The thickness of the upper crust correlates with the tectonic structure of Iceland; the upper crust is thickest on the flanks of the northern and central volcanic rift zones and thinnest close to active or extinct central volcanoes. Below the Krafla central volcano in northeastern Iceland the receiver function models show a prominent low-velocity zone at 10,15 km depth with minimum shear wave velocities of 2.0,2.5 km s,1. We suggest that this feature results from the presence of partially molten sills in the lower crust. Less prominent low-velocity zones found in other regions of Iceland may arise from locally high temperatures in the crust or from acidic intrusive bodies at depth. A combination of the receiver function results and seismic refraction results constrains the crustal thickness across a large part of Iceland. Melting by passive decompression of the hot mantle below the rift zone in northern Iceland forms a crust of thickness ,20 km. In contrast, the larger crustal thickness below central Iceland probably arises from enhanced melt production due to active upwelling in the plume core. [source]


    The seismic anomaly beneath Iceland extends down to the mantle transition zone and no deeper

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2000
    G. R. Foulger
    A 3-D teleseismic tomography image of the upper mantle beneath Iceland of unprecedented resolution reveals a subvertical low wave speed anomaly that is cylindrical in the upper 250 km but tabular below this. Such a morphological transition is expected towards the bottom of a buoyant upwelling. Our observations thus suggest that magmatism at the Iceland hotspot is fed by flow rising from the mantle transition zone. This result contributes to the ongoing debate about whether the upper and lower mantles convect separately or as one. The image also suggests that material flows outwards from Iceland along the Reykjanes Ridge in the upper 200 km, but is blocked in the upper 150 km beneath the Tjornes Fracture Zone. This provides direct observational support for the theory that fracture zones dam lateral flow along ridges. [source]


    Predicting population consequences of ocean climate change for an ecosystem sentinel, the seabird Cassin's auklet

    GLOBAL CHANGE BIOLOGY, Issue 7 2010
    SHAYE G. WOLF
    Abstract Forecasting the ecological effects of climate change on marine species is critical for informing greenhouse gas mitigation targets and developing marine conservation strategies that remain effective and increase species' resilience under changing climate conditions. Highly productive coastal upwelling systems are predicted to experience substantial effects from climate change, making them priorities for ecological forecasting. We used a population modeling approach to examine the consequences of ocean climate change in the California Current upwelling ecosystem on the population growth rate of the planktivorous seabird Cassin's auklet (Ptychoramphus aleuticus), a demographically sensitive indicator of marine climate change. We use future climate projections for sea surface temperature and upwelling intensity from a regional climate model to forecast changes in the population growth rate of the auklet population at the important Farallon Island colony in central California. Our study projected that the auklet population growth rate will experience an absolute decline of 11,45% by the end of the century, placing this population on a trajectory toward extinction. In addition, future changes in upwelling intensity and timing of peak upwelling are likely to vary across auklet foraging regions in the California Current Ecosystem (CCE), producing a mosaic of climate conditions and ecological impacts across the auklet range. Overall, the Farallon Island Cassin's auklet population has been declining during recent decades, and ocean climate change in this century under a mid-level emissions scenario is projected to accelerate this decline, leading toward population extinction. Because our study species has proven to be a sensitive indicator of oceanographic conditions in the CCE and a powerful predictor of the abundance of other important predators (i.e. salmon), the significant impacts we predicted for the Cassin's auklet provide insights into the consequences that ocean climate change may have for other plankton predators in this system. [source]


    Using Temperature to Test Models of Flow Near Yucca Mountain, Nevada

    GROUND WATER, Issue 5 2003
    Scott Painter
    Ground water temperatures in the fractured volcanic aquifer near Yucca Mountain, Nevada, have previously been shown to have significant spatial variability with regions of elevated temperatures coinciding roughly with near-vertical north-south trending faults. Using insights gained from one-dimensional models, previous investigators have suggested upwelling along faults from an underlying aquifer as a likely explanation for this ground water temperature pattern. Using a three-dimensional coupled flow and heat-transport model, we show that the thermal high coinciding with the Paintbrush fault zone can be explained without significant upwelling from the underlying aquifer. Instead, the thermal anomaly is consistent with thermal conduction enhanced slightly by vertical ground water movement within the volcanic aquifer sequence. If more than -400 m3/day of water enters the volcanic aquifer from below along a 10 km fault zone, the calculated temperatures at the water table are significantly greater than the measured temperatures. These results illustrate the potential limitations in using one-dimensional models to interpret ground water temperature data, and underscore the value in combining temperature data with fully coupled three-dimensional simulations. [source]


    Impact of global warming on ENSO variability using the coupled giss GCM/ZC model

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 10 2006
    Dr. Timothy Eichler Research Scientist
    Abstract This study uses a hybrid coupled model (referred to as the general-circulation model (GCM)/Zebiak/Cane (ZC) model), which consists of the Goddard Institute for Space Studies' (GISS) Atmospheric general-circulation model (AGCM) coupled to the oceanic component of the ZC intermediate model to assess the impact of global warming on El Niño behavior, with and without the influence of heat introduced from the subtropical Pacific (via subtropical cell (STC) pathway). The baseline GCM/ZC model produces El Niño variability with a two year periodicity and an amplitude of approximately half the magnitude of observed El Niño. The GCM/ZC model also produces an appropriate atmospheric global response to El Niño/southern oscillation (ENSO) as shown by composites of 500 hPa heights, sea-level pressure (SLP), 200 hPa wind, and precipitation during El Niño and La Niña periods. To evaluate the importance of global warming on ENSO variability, 2× CO2 and 4× CO2 transient simulations were done increasing the atmospheric CO2 one percent per year, then extending the runs for an additional 70 years to obtain equilibrium climates for each run. An additional set of global-warming simulations was run after including a STC parameterization generated by computing 5-year running means of the sea-surface temperature (SST) difference between a transient run and the 1× CO2 GCM/ZC run at the anticipated subduction zones (160,130°W, 20,40°N and 20,44°S, 160,130°W) and adding it to the base of the equatorial mixed-layer of the ZC model with a time lag of 15 years. This effectively alters the vertical temperature gradient of the ZC model, which affects SST via upwelling. Two features of the GCM/ZC response to global warming are emphasized. Firstly, the inclusion of the STC results in a major redistribution of heat across the equatorial Pacific, leading to an El Niño-like response in the final equilibrium solution with less variability about the mean. The global warming aspect due to the El Niño-like response results in a positive feedback on global warming, which causes a higher global surface-air temperature (SAT) than identical transient simulations without inclusion of the STC. Secondly, including the STC effect produces a far greater magnitude of global ENSO-like impact because of the reduction of, or even the reversal of, the equatorial Pacific longitudinal SST gradient. The implications of such an extreme climate scenario are discussed. Copyright © 2006 Royal Meteorological Society [source]


    Climate dynamics of atmosphere and ocean in the equatorial zone: a synthesis

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 13 2004
    Stefan Hastenrath
    Abstract A synopsis is offered of circulation mechanisms in the oceanic regions of the equatorial zone. Over the eastern Atlantic and Pacific, and especially in boreal summer, cross-equatorial flow from the Southern Hemisphere is strong and induces a tongue of cold surface waters, centred to the south of the equator. Upon crossing the equator in these sectors, owing to the Coriolis effect and a kinetic energy imbalance, the airstream speeds up and divergence develops, producing the Intertropical Divergence Zone (ITDZ). Once these processes result in the wind recurving from southeasterly to southwesterly, the flow slows down and becomes convergent, manifest in the Intertropical Convergence Zone, with a maximum to the south of the wind confluence. By contrast, over the western Atlantic and central Pacific and especially in boreal winter, winds in the equatorial band are predominantly from the east, upper-ocean Ekman transport is directed away from the equator, and the upwelling and cold tongue are centred on the equator. Cross-equatorial flow is insufficient to produce recurvature, the ITDZ is narrower and weaker, the divergence maximum is at the equator rather than in low northern latitudes, and the convergence maximum straddles the wind confluence. Over the Indian Ocean, the wind field is dominated by the alternation between the predominantly meridional flow of the winter and summer monsoons. Equatorial westerlies are limited to the short monsoon transition seasons. Essential for their origin is an eastward pressure gradient along the equator and weak southern trade winds, allowing recurvature somewhat south of the equator. Because the zonal pressure gradient is strongest in boreal summer and the southern trade winds are weakest in austral summer, the equatorial westerlies peak in spring and autumn. The boreal autumn equatorial westerlies are the surface manifestation of a powerful zonal,vertical circulation cell along the Indian Ocean equator. Equatorial zonal,vertical circulation cells require well-developed zonal flow in the lower troposphere along the equator and, therefore, appear confined to the oceanic longitudes and certain seasons. Thus, they are found over the Atlantic only in boreal winter and over the Indian Ocean only in boreal autumn, whereas over the Pacific they prevail all year round. Copyright © 2004 Royal Meteorological Society [source]


    An unconformity in the early Miocene syn-rifting succession, northern Noto Peninsula, Japan: Evidence for short-term uplifting precedent to the rapid opening of the Japan Sea

    ISLAND ARC, Issue 3 2002
    Kazuhiko Kano
    Abstract The present paper describes the newly discovered early Miocene unconformity in the northern Noto Peninsula, on the Japan Sea side, central Japan. The unconformity marks the boundary between an early Miocene non-marine to marine succession and a more extensive, late early to early middle Miocene marine succession, and contains a time gap of an order of 1 million years or less from 18 Ma or earlier to 17 Ma. The early Miocene succession likely represents an early phase of marine transgression and initial slow rifting. The overlying early to early middle Miocene succession records the climax of the opening of the Japan Sea at ca 16 Ma with widespread, rapid subsidence of the Japan Arc. The unconformity between the two transgressive successions may represent a global sealevel fall or, more likely, crustal uplifting because no upward-shallowing or regressive facies remains between the two successions. Early Miocene unconformities that are thought to be correlative with this unconformity in the northern Noto Peninsula occur in places along the Japan Sea coast of Sakhalin and Japan. They are likely to have been produced during rifting in response to upwelling of asthenospheric mantle, although more accurate age constraints are necessary to evaluate this idea. [source]


    A major fish stranding caused by a natural hypoxic event in a shallow bay of the eastern South Pacific Ocean

    JOURNAL OF FISH BIOLOGY, Issue 7 2010
    E. Hernández-Miranda
    A massive beaching and mortality of fishes occurred in Coliumo Bay, a shallow bay located along the coast of the eastern South Pacific Ocean on 3 January 2008. This stranding was a consequence of an abrupt decrease in the dissolved oxygen concentration throughout the whole water column, due to the effect of intense upwelling along the coast off central-southern Chile. The main objectives of this study were: (1) to characterize taxonomically and biologically the fish species assemblage present in this beaching; (2) to evaluate several physiological indicators for the condition of the beached species at the time of their death; and (3) to assess the possible cause,effect mechanisms involved in the fishes death and the changes that took place in the fish community throughout the time. In this beaching, 26 fish species were identified: 23 teleosts, one myxiniform and two elasmobranchs. Most beached specimens were juveniles. Haematological and histological evidence indicate that severe hypoxia that lasted for at least 48 h was the most plausible cause of death. The main conclusion of this study is that the presence of oxygen-poor equatorial sub-surface water in the shallow coastal zone due to intense regional-scale upwelling caused the fish stranding. Although the effect of the hypoxic event was severe for the fish assemblage of Coliumo Bay, the rapid recuperation observed suggests that hypoxic events at the local spatial scale can be buffered by migration processes from the fish community inhabiting close by areas non-affected by low oxygen conditions. The effect that severe hypoxic events may have on larger spatial scales remains unknown. [source]


    SEASONAL VARIABILITY OF THE ORGANIC-WALLED DINOFLAGELLATE CYST PRODUCTION IN THE COASTAL UPWELLING REGION OFF CAPE BLANC (MAURITANIA): A FIVE-YEAR SURVEY,

    JOURNAL OF PHYCOLOGY, Issue 1 2010
    Karin A. F. Zonneveld
    A 5-year sediment trap survey in the upwelling area off Cape Blanc (NW Africa) provides information on the seasonal and annual resting cyst production of dinoflagellates, their sinking characteristics and preservation potential. Strong annual variation in cyst production characterizes the region. Cyst production of generally all investigated species, including Alexandrium pseudogonyaulax (Biecheler) T. Horig. ex T. Kita et Fukuyo (cyst genus Impagidinium) and Gonyaulax spinifera (Clap. et J. Lachm.) Diesing (cyst genus Nematosphaeropsis) was enhanced with increasing upper water nutrient and trace-element concentrations. Cyst production of Lingulodinium polyedrum (F. Stein) J. D. Dodge was the highest at the transition between upwelling and upwelling-relaxation. Cyst production of Protoperidinium americanum (Gran et Braarud) Balech, Protoperidinium monospinum (Paulsen) K. A. F. Zonn. et B. Dale, and Protoperidinium stellatum (D. Wall) Balech, and heterotrophic dinoflagellates forming Brigantedinium spp. and Echinidinium aculeatum Zonn., increased most pronouncedly during upwelling episodes. Production of Protoperidinium conicum (Gran) Balech and Protoperidinium pentagonum (Gran) Balech cysts and total diatom valves were related, providing evidence of a predator,prey relationship. The export cyst-flux of E. aculeatum, P. americanum, P. monospinum, and P. stellatum was strongly linked to the flux of total diatom valves and CaCO3, whereas the export production of Echinidinium granulatum Zonn. and Protoperidinium subinerme (Paulsen) A. R. Loebl. correlated with total organic carbon, suggesting potential consumption of diatoms, prymnesiophytes, and organic matter, respectively. Sinking velocities were at least 274 m · d,1, which is in range of the diatom- and coccolith-based phytoplankton aggregates and "slower" fecal pellets. Species-selective degradation did not occur in the water column, but on the ocean floor. [source]


    INTEGRATING INTENSIVE AQUACULTURE OF CHONDRACANTHUS EXASPERATUS, THE TURKISH TOWEL SEAWEED

    JOURNAL OF PHYCOLOGY, Issue 2001
    Article first published online: 24 SEP 200
    Waaland, J. R. Department of Botany, University of Washington, Seattle, WA 98195 USA A new, high value product from the Turkish Towel Seaweed, Chondracanthus exasperatus, was developed recently by a Seattle company. However, Washington State has a long term moratorium on commercial seaweed harvesting from wild populations so there is renewed interest in intensive cultivation of this species. The initial phase of this research was conducted at Mukilteo, Washington. There, strategies for long term cultivation in tanks were tested, and a custom cultivation tank design was developed for pilot scale cultivation research at a site on the shore of Clam Bay near Manchester, Washington. Long term cultivation is now being tested in tanks of up to 5000 L volume supplied with natural seawater, seawater supplemented with nutrients, and seawater effluent from nearby Pacific Halibut culture tanks. Seawater from Clam Bay is naturally rich in nutrients from tidal driven upwelling and nearby commercial salmon mariculture operations. Supplemental nutrients (commercially available "f/2" enrichment) and halibut culture tank effluent have both been tested for their ability to support C. exasperatus growth with relatively low seawater turnover rates. Compared to seawater at the site, Halibut tank effluent differs in both nutrient composition and quantities. Initial results indicate that halibut tank effluent is a satisfactory source of nutrients for C. exasperatus in intensive culture and that the Turkish Towel Seaweed scrubs significant quantities of nutrients from halibut tank effluent. [source]


    Late Quaternary upwelling off tropical NW Africa: new micropalaeontological evidence from ODP Hole 658C,

    JOURNAL OF QUATERNARY SCIENCE, Issue 3 2006
    Simon K. Haslett
    Abstract Planktonic foraminifera and radiolaria have been analysed in a Late Quaternary (40,0,ka) sediment sequence from Ocean Drilling Program (ODP) Hole 658C located under a coastal upwelling system near Cap Blanc, offshore northwest Africa, in order to document the palaeoceanographic history of the area. Temporal variations in species abundance and faunal assemblage analysis reveal a tripartite phased sequence of palaeoceanographic change through the Late Quaternary. Phase 1 spans 40,14.5,ka and is characterised by moderate upwelling, but Heinrich event 2 is distinguished as a brief episode of strengthened upwelling. Phase 2 begins with a change in a number of variables at ca. 14.5,ka and extends to ca. 5.5,ka. This phase is characterised by a general strengthening of upwelling, but may be subdivided into three minor phases including (a) the recognition of the Younger Dryas, marked by a temporary reduction in upwelling strength, followed by (b) an intensification of upwelling, and (c) upwelling and high productivity between 8 and 5.5,ka. This phase of upwelling corresponds with maximum Holocene cooling, possibly triggered by the collapse of the Laurentide ice sheet. Phase 3 extends from 5.5 to 0,ka and is characterised by weak upwelling and significant calcite dissolution. These phases are related to climatic events, particularly the African Humid Period (AHP), which is coincident with Phase 2. The AHP is characterised by increased precipitation, linked to an intensification of the African monsoon that enhances North East Trade Wind-driven coastal upwelling and is associated with the expansion of continental vegetation across North Africa. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Changing marine productivity off northern Chile during the past 19,000 years: a multivariable approach

    JOURNAL OF QUATERNARY SCIENCE, Issue 4 2004
    M. Mohtadi
    Abstract A multivariable approach utilising bulk sediment, planktonic Foraminifera and siliceous phytoplankton has been used to reconstruct rapid variations in palaeoproductivity in the Peru,Chile Current System off northern Chile for the past 19,000,cal.,yr. During the early deglaciation (19,000,16,000,cal.,yr,BP), our data point to strongest upwelling intensity and highest productivity of the past 19,000,cal.,yr. The late deglaciation (16,000,13,000,cal.,yr,BP) is characterised by a major change in the oceanographic setting, warmer water masses and weaker upwelling at the study site. Lowest productivity and weakest upwelling intensity are observed from the early to the middle Holocene (13,000,4000,cal.,yr,BP), and the beginning of the late Holocene (<4000,cal.,yr,BP) is marked by increasing productivity, mainly driven by silicate-producing organisms. Changes in the productivity and upwelling intensity in our record may have resulted from a large-scale compression and/or displacement of the South Pacific subtropical gyre during more productive periods, in line with a northward extension of the Antarctic Circumpolar Current and increased advection of Antarctic water masses with the Peru,Chile Current. The corresponding increase in hemispheric thermal gradient and wind stress induced stronger upwelling. During the periods of lower productivity, this scenario probably reversed. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Integrated marine and terrestrial evidence for abrupt Congo River palaeodischarge fluctuations during the last deglaciation

    JOURNAL OF QUATERNARY SCIENCE, Issue 8 2001
    Fabienne Marret
    Abstract We present a high-resolution reconstruction of tropical palaeoenvironmental changes for the last deglacial transition (18 to 9 cal. kyr BP) based on integrated oceanic and terrestrial proxies from a Congo fan core. Pollen, grass cuticle, Pediastrum and dinoflagellate cyst fluxes, sedimentation rates and planktonic foraminiferal ,18O ratios, u37K, sea-surface temperature and alkane/alkenone ratio data highlight a series of abrupt changes in Congo River palaeodischarge. A major discharge pulse is registered at around 13.0 cal. kyr BP which we attribute to latitudinal migration of the Intertropical Convergence Zone (ITCZ) during deglaciation. The data indicate abrupt and short-lived changes in the equatorial precipitation regime within a system of monsoonal dynamics forced by precessional cycles. The phases of enhanced Congo discharge stimulated river-induced upwelling and enhanced productivity in the adjacent ocean. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Past and present distribution, densities and movements of blue whales Balaenoptera musculus in the Southern Hemisphere and northern Indian Ocean

    MAMMAL REVIEW, Issue 2 2007
    T. A. BRANCH
    ABSTRACT 1Blue whale locations in the Southern Hemisphere and northern Indian Ocean were obtained from catches (303 239), sightings (4383 records of ,8058 whales), strandings (103), Discovery marks (2191) and recoveries (95), and acoustic recordings. 2Sighting surveys included 7 480 450 km of effort plus 14 676 days with unmeasured effort. Groups usually consisted of solitary whales (65.2%) or pairs (24.6%); larger feeding aggregations of unassociated individuals were only rarely observed. Sighting rates (groups per 1000 km from many platform types) varied by four orders of magnitude and were lowest in the waters of Brazil, South Africa, the eastern tropical Pacific, Antarctica and South Georgia; higher in the Subantarctic and Peru; and highest around Indonesia, Sri Lanka, Chile, southern Australia and south of Madagascar. 3Blue whales avoid the oligotrophic central gyres of the Indian, Pacific and Atlantic Oceans, but are more common where phytoplankton densities are high, and where there are dynamic oceanographic processes like upwelling and frontal meandering. 4Compared with historical catches, the Antarctic (,true') subspecies is exceedingly rare and usually concentrated closer to the summer pack ice. In summer they are found throughout the Antarctic; in winter they migrate to southern Africa (although recent sightings there are rare) and to other northerly locations (based on acoustics), although some overwinter in the Antarctic. 5Pygmy blue whales are found around the Indian Ocean and from southern Australia to New Zealand. At least four groupings are evident: northern Indian Ocean, from Madagascar to the Subantarctic, Indonesia to western and southern Australia, and from New Zealand northwards to the equator. Sighting rates are typically much higher than for Antarctic blue whales. 6South-east Pacific blue whales have a discrete distribution and high sighting rates compared with the Antarctic. Further work is needed to clarify their subspecific status given their distinctive genetics, acoustics and length frequencies. 7Antarctic blue whales numbered 1700 (95% Bayesian interval 860,2900) in 1996 (less than 1% of original levels), but are increasing at 7.3% per annum (95% Bayesian interval 1.4,11.6%). The status of other populations in the Southern Hemisphere and northern Indian Ocean is unknown because few abundance estimates are available, but higher recent sighting rates suggest that they are less depleted than Antarctic blue whales. [source]


    Organic-walled dinoflagellate cyst production in relation to upwelling intensity and lithogenic influx in the Cape Blanc region (off north-west Africa)

    PHYCOLOGICAL RESEARCH, Issue 2 2005
    Ewa Susek
    SUMMARY Fossil dinoflagellate cyst assemblages are increasingly used in paleoclimatic research to establish paleoenvi-ronmental reconstructions. To obtain reliable reconstructions, it is essential to know which physical factors influence the cyst production. Most information about the relationship between variations in physical parameters and cyst production is known from middle and higher latitudes. Information from the (sub)tropics is rare. To increase this information, the temporal variation in cyst assemblages from the upwelling area off north-west Africa (off Mauritania) has been compared to environmental conditions of the upper water column. Samples were collected by the sediment trap CB9, off north-west Africa (Cape Blanc, 21°15,2,N, 20°42,2,W) between 11 June 1998 and 7 November 1999 at 27.5-day intervals. Off Cape Blanc, upwelling occurs throughout the year with variable intensity. This region is also characterized by frequently occurring Saharan dust storms. Seasonal variations in dust input, upwelling intensity and sea surface temperature are reflected by the production of organic-walled dinoflagellate cyst assemblages. Several cyst taxa are produced throughout the sampling interval, with the highest fluxes at times of strongest upwelling relaxation and/or dust input (Echinidinium aculeatum Zonneveld, Echini-din ium delicatum Zonneveld, Echinidinium granulaturn Zonneveld, Echinidinium spp., Impagidinium aculeatum (Wall) Lentin et Williams, Impagidinium sphaeri-cum (Wall) Lentin et Williams, Protoperidinium americanum (Gran et Braarud) Balech, Protoperidinium stellatum (Wall in Wall et Dale) Rochon etal., Protoperidinium spp., Selenopemphix nephroides (Benedek) Benedek et Sarjeant and Selenopemphix quanta (Bradford) Matsuoka). Species such as, for example, Bitectatodinium spongium (Zonneveld) Zonneveld et Jurkschat and Impagidinium patulum (Wall) Stover et Evitt do not show any production pattern related to a particular season of the year or to specific environmental conditions in the upper water column. The production of cysts of Protoperidinium monospinum (Paulsen) Zonneveld et Dale is restricted to intervals with increased nutrient concentrations in upper waters when sea surface temperatures at the sampling site is below approximately 24°C. [source]


    The hyporheic zone: Linking groundwater and surface water,understanding the paradigm

    REMEDIATION, Issue 1 2001
    Thomas M. Biksey
    The hyporheic zone, the transition region between groundwater and surface water, represents an important interface between terrestrial and aquatic ecosystems. When groundwater combines with surface water in this zone, the characteristics of each are blended and new gradients are established, especially for contaminants. Therefore, the hyporheic zone is important in considering the "big ecological picture" as the hydrologic continuum connecting groundwater and surface water. The importance is reflected by the current focus of this zone in ecological risk assessments conducted under the Resource Conservation and Recovery Act (RCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and Clean Water Act (CWA) programs. A variety of tools can be used to measure, analyze, and predict the physical, chemical, and biological processes that occur within the hyporheic zone. Directly measuring the flux of water across the interface between groundwater and surface water determines whether surface water enters the streambed at downwelling zones or groundwater discharges from the streambed in upwelling zones. In addition to direct measurements of the flux of water, several states have developed models to characterize the interaction of groundwater and surface water. The variability in physical and chemical characteristics between upwelling and downwelling zones influences the local ecology within the zone. The study of the species within the hyporheic zone includes ecological surveys and ecotoxicological investigations. The evolving study of the hyporheic zone will necessitate an increase in basic research into hydraulic considerations, an identification of regional representative sites with contaminated hyporheic zones, and a better understanding of the ecology of the species within the zone. © 2001 John Wiley & Sons, Inc. [source]


    Genesis and Mixing/Mingling of Mafic and Felsic Magmas of Back-Arc Granite: Miocene Tsushima Pluton, Southwest Japan

    RESOURCE GEOLOGY, Issue 1 2009
    Ki-Cheol Shin
    Abstract The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc-alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back-arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2,6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065,0.7085) and lower ,Nd(t) (,7.70 to ,4.35) than the MME of basaltic,dacitic composition (0.7044,0.7061 and ,0.53 to ,5.24), whereas most gray granites have intermediate chemical and Sr,Nd isotopic compositions (0.7061,0.7072 and ,3.75 to ,6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr,Nd,Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma,fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back-arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI-like composition, which plays an important role in the genesis of igneous rocks there. [source]


    Helium Isotope Geochemistry of Ore-forming Fluids from Furong Tin Orefield in Hunan Province, China

    RESOURCE GEOLOGY, Issue 1 2006
    Zhao-li Li
    Abstract. The Furong tin orefield, located in southern Hunan, China, is a newly-discovered super-large tin orefield. In contrast to most other tin deposits associated with S-type granites, the Furong tin deposit is closely associated with the Qitianling A-type granite. The 3He/4He ratios of fluid inclusions in pyrite and arsenopyrite from this orefield range from 0.13 to 2.95 Ra. The influence of various post-mineralization processes on the helium isotopic composition of ore-forming fluid inclusions are estimated negligible. Thus, the analytical values of helium isotopic composition basically represent the original values of ore-forming fluids at the time they were trapped. The 3He/4He ratios of ore-forming fluids from the Furong orefield indicate the existence of mantle-source components. It supports the idea that both the Furong tin orefield and Qitianling granite formed under the geodynamic background of mantle upwelling and crustal extension. [source]


    Intraseasonal variability of the ocean , atmosphere coupling in the Gulf of Guinea during boreal spring and summer

    THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue S1 2010
    Gaëlle de Coëtlogon
    Abstract Statistical analyses of the satellite TMI sea-surface temperature (SST) and QuikSCAT surface winds in boreal spring and summer are performed to investigate the intraseasonal variability of air,sea interactions in the Gulf of Guinea. There, empirical orthogonal function decomposition shows the existence of peaks around 15 days, and their lagged cross-correlation the signature of an expected 5-day lag wind forcing and 3-day lag strong negative SST feedback. Lagged linear regressions are performed onto a reference SST index of the cold tongue northern front in the Gulf of Guinea. A cold SST anomaly covering the equatorial and coastal upwelling is forced after about one week by stronger-than-usual south-easterlies linked to the St Helena anticyclone, suggesting that intraseasonal variability in the Gulf of Guinea is connected to large-scale fluctuations in the South Atlantic. Within about 5°S and 5°N, two retroactions between SST and surface wind appear to dominate near-surface atmosphere conditions. When the wind leads the SST, stronger monsoonal winds north of 2°N are partly sustained by the developing SST anomaly and bring more humidity and rainfall toward the continent. When the SST leads the wind, a reversal of anomalous winds is observed mainly south of 2°N, closing a negative feedback loop with a biweekly periodicity. Eventually, further investigation with an ocean model emphasizes the contribution of the horizontal advection in shaping these intraseasonal SST signals. The contribution of vertical processes may also be important but was more difficult to estimate. Copyright © 2010 Royal Meteorological Society [source]