Home About us Contact | |||
Uptake Kinetics (uptake + kinetics)
Selected AbstractsEffects of Ischaemia on Subsequent Exercise-Induced Oxygen Uptake Kinetics in Healthy Adult HumansEXPERIMENTAL PHYSIOLOGY, Issue 2 2002Michael L. Walsh Leg muscles were occluded (33 kPa) prior to exercise to determine whether the induced metabolic changes, and reactive hyperaemia upon occlusion release just prior to the exercise, would accelerate the subsequent oxygen consumption (V,O2) response. Eight subjects performed double bouts (6 min duration, 6 min rest in-between) of square wave leg cycle ergometry both below and above their lactate threshold (LT). Prior to exercise, large blood pressure cuffs were put around the upper thighs. Occlusion durations were 0 min (control), 5 min and 10 min. Ischaemia was terminated within 5 s prior to exercise onset. Heart rate, V,O2, ventilatory rate (V,E), electromyogram (EMG) and haemoglobin/myoglobin (Hb/Mb) saturation were recorded continuously. Single exponential modelling demonstrated that, compared to control (time constant = 53.9 ± 13.9 s), ischaemia quickened the V,O2 response (P < 0.05) for the first bout of exercise above LT (time constant = 48.3 ± 14.5 s) but not to any other exercise bout below or above LT. The 3-6 min integrated EMG (iEMG) slope was correlated to the 3-6 min V,O2 slope (r = 0.73). Hb/Mb saturation verified the ischaemia but did not show a consistent relation to the V,O2 time course. Reactive hyperaemia induced a faster V,O2 response for work rates above LT. The effect, while significant, was not large considering the expected favourable metabolic and circulatory changes induced by ischaemia. [source] Uptake kinetics and subcellular compartmentalization of cadmium in acclimated and unacclimated earthworms (Eisenia andrei)ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2010Shuo Yu Abstract Acclimation to cadmium (Cd) levels exceeding background concentrations may influence the ability of earthworms to accumulate Cd with minimum adverse effects. In the present study, earthworms (Eisenia andrei) were acclimated by exposure to 20,mg/kg Cd (dry wt) in Webster soil for 28 d. A 224-d bioaccumulation test was subsequently conducted with both acclimated and unacclimated worms exposed in Webster soils spiked with 20,mg/kg and 100,mg/kg Cd (dry wt). Uptake kinetics and subcellular compartmentalization of Cd were examined. Results suggest that acclimated earthworms accumulated more Cd and required a longer time to reach steady state than unacclimated worms. Most of the Cd was present in the metallothionein (MT) fraction. Cadmium in the MT fraction increased approximately linearly with time and required a relatively longer time to reach steady state than Cd in cell debris and granule fractions, which quickly reached steady state. Cadmium in the cell debris fraction is considered potentially toxic, but low steady state concentrations observed in the present study would not suggest the potential for adverse effects. Future use of earthworms in ecological risk assessment should take into consideration pre-exposure histories of the test organisms. A prolonged test period may be required for a comprehensive understanding of Cd uptake kinetics and compartmentalization. Environ. Toxicol. Chem. 2010;29:1568,1574. © 2010 SETAC [source] Kinetics of cadmium accumulation in periphyton under freshwater conditions,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2009Philippe Bradac Abstract The aim of the present study was to investigate the kinetics of cadmium (Cd) accumulation (total and intracellular) in periphyton under freshwater conditions in a short-term microcosm experiment. Periphyton was precolonized in artificial flow-through channels supplied with natural freshwater and then exposed for 26.4 h to nominal Cd concentrations of 5 and 20 nM added to natural freshwater. Labile Cd in water determined with diffusion gradient in thin films was 60 to 69% of total dissolved Cd in the exposure channels and 11% in the control channel. Intracellular Cd concentrations in periphyton increased rapidly and linearly during the first 71 min. Initial intracellular uptake rates were 0.05 and 0.18 nmol of Cd/g of dry weight × min in the 5 nM and 20 nM exposures, respectively. The subsequent intracellular uptake was slower, approaching steady state at the end of Cd exposure. Uptake kinetics of Cd was slower when compared to experiments with planktonic algal cultures, probably due to diffusion limitations. Intracellular Cd uptake during the entire exposure was modeled with a nonlinear, one-compartment model from which uptake and clearance rate constants, as well as bioconcentration factors, were obtained. The release of Cd from periphyton after the end of Cd exposure was slow when compared to the initial uptake rates. [source] Extracellular glucose concentration alters functional activity of the intestinal oligopeptide transporter (PepT-1) in Caco-2 cellsJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 3 2003Vanessa M. D'Souza Abstract The objective of this study was to determine the effect of different cell culture media glucose concentrations on the functional activity of PepT-1 in Caco-2 cells. Uptake kinetics of Gly-Sar into Caco-2 cells that were maintained in iso-osmotic media containing 25 or 5.5 mM glucose were determined in the presence and absence of amino acid-selective chemical modifiers and dithiothreitol. Inhibition of Gly-Sar uptake into Caco-2 cells was measured in the presence of dipeptides and xenobiotics exhibiting various binding affinities for the PepT-1. The effect of extracellular glucose on PepT-1 gene expression was assessed using comparative RT-PCR. Long-term exposure of Caco-2 cells to 25 mM glucose reduced maximum transport capacity for Gly-Sar uptake without altering PepT-1 gene expression. In contrast, binding affinity of Gly-Sar and other dipeptides or xenobiotics was not significantly changed. Chemical modification of Lys and Tyr residues decreased Vmax, while Cys modification increased the maximum transport capacity of the carrier. Preincubation of Caco-2 cells with dithiothreitol restored PepT-1 activity in cells maintained at 25 mM glucose. In conclusion, cell culture media containing 25 mM glucose decreases maximum transport capacity of PepT-1 in Caco-2 cells without affecting substrate recognition, at least in part, mediated via an oxidative pathway. © 2003 Wiley-Liss Inc. and the American Pharmaeceutical Association J Pharm Sci 92:594,603, 2003 [source] Uptake kinetics and subcellular compartmentalization of cadmium in acclimated and unacclimated earthworms (Eisenia andrei)ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2010Shuo Yu Abstract Acclimation to cadmium (Cd) levels exceeding background concentrations may influence the ability of earthworms to accumulate Cd with minimum adverse effects. In the present study, earthworms (Eisenia andrei) were acclimated by exposure to 20,mg/kg Cd (dry wt) in Webster soil for 28 d. A 224-d bioaccumulation test was subsequently conducted with both acclimated and unacclimated worms exposed in Webster soils spiked with 20,mg/kg and 100,mg/kg Cd (dry wt). Uptake kinetics and subcellular compartmentalization of Cd were examined. Results suggest that acclimated earthworms accumulated more Cd and required a longer time to reach steady state than unacclimated worms. Most of the Cd was present in the metallothionein (MT) fraction. Cadmium in the MT fraction increased approximately linearly with time and required a relatively longer time to reach steady state than Cd in cell debris and granule fractions, which quickly reached steady state. Cadmium in the cell debris fraction is considered potentially toxic, but low steady state concentrations observed in the present study would not suggest the potential for adverse effects. Future use of earthworms in ecological risk assessment should take into consideration pre-exposure histories of the test organisms. A prolonged test period may be required for a comprehensive understanding of Cd uptake kinetics and compartmentalization. Environ. Toxicol. Chem. 2010;29:1568,1574. © 2010 SETAC [source] Atorvastatin therapy improves exercise oxygen uptake kinetics in post-myocardial infarction patientsEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 6 2007M. Guazzi Abstract Background Statins represent a modern mainstay of the drug treatment of coronary artery disease and acute coronary syndromes. Reduced aerobic work performance and slowed VO2 kinetics are established features of the clinical picture of post-myocardial infarction (MI) patients. We tested the hypothesis that statin therapy improves VO2 exercise performance in normocholesterolaemic post-MI patients. Materials and methods, According to a double-blinded, randomized, crossover and placebo-controlled study design, in 18 patients with uncomplicated recent (3 days) MI we investigated the effects of atorvastatin (20 mg day,1) on gas exchange kinetics by calculating VO2 effective time constant (tau) during a 50-watt constant workload exercise, brachial artery flow-mediated dilatation (FMD) as an index of endothelial function, left ventricular function (echocardiography) and C-reactive protein (CRP, as an index of inflammation). Atorvastatin or placebo was given for 3 months each. Results, Atorvastatin therapy significantly improved exercise VO2 tau and FMD, and reduced CRP levels. We did not observe changes in cardiac contractile function and relaxation properties during all study periods in either group. Conclusions, In post-MI patients exercise performance is a potential additional target of benefits related to statin therapy. Endothelial function improvement is very likely implicated in this newly described therapeutic property. [source] Complement receptors type 1 (CR1, CD35) and 2 (CR2, CD21) cooperate in the binding of hydrolyzed complement factor 3 (C3i) to human B lymphocytesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 12 2003Graham, Quinton Leslie, Robert Abstract The C3b-binding receptor, CR1/CD35, supports CR2/CD21-mediated activation of complement by human B lymphocytes, possibly by associating with CR2 to promote or stabilize the binding of hydrolyzed C3 (C3i), the primary component of the AP convertase, C3i-Bb. To evaluate this hypothesis, we examined the uptake kinetics and binding equilibria for C3i dimer interaction with human blood cells in the absence and presence of CR1- and CR2-blocking mAb. C3i displayed dual uptake kinetics to B lymphocytes, comprising of rapid binding to CR1 and slower binding to CR2. The forward rate constants (k1) for CR1 and CR2, operating independently, differed ca. 9-fold (k1=193±9.4 and 22.2±6.0×103,M,1s,1, respectively). Equilibrium binding of C3i to B lymphocytes was also complex, varying in strength by ca. 13-fold over the C3i concentration range examined. The maximum association constant (Ka,,max=109±27.2×107,l/mole) was ca. 9- and 6-fold greater, respectively, than those for CR1 or CR2 acting alone (Ka=13.2±5.3 and 18.5±3.5×107,l/mole). The high avidity of the CR1-CR2 complex for C3i is consistent with its rates of C3i uptake and release being determined by CR1 and CR2, respectively. [source] Carbon monoxide uptake kinetics in unamended and long-term nitrogen-amended temperate forest soilsFEMS MICROBIOLOGY ECOLOGY, Issue 3 2006Alvarus S. K. Chan Abstract The effect of nitrogen (N) additions on the dynamics of carbon monoxide consumption in temperate forest soils is poorly understood. We measured soil CO profiles, potential rates of CO consumption and uptake kinetics in temperate hardwood and pine control plots and plots amended with 50 and 150 kg N ha,1 year,1 for more than 15 years. Soil profiles of CO concentrations were above atmospheric levels in the high-N plots of both stands, suggesting that in these forest soils the balance between consumption and production may be shifted so that either production is increased or consumption decreased. Highest rates of CO consumption were measured in the organic horizon and decreased with soil depth. In the N-amended plots, CO consumption increased in all but one soil depth of the hardwood stand, but decreased in all soil depths of the pine stand. CO enzyme affinities increased with soil depth in the control plots. However, enzyme affinities in the most active soil depths (organic and 0,5 cm mineral) decreased in response to low levels of N in both stands. In the high-N plots, affinities dramatically-increased in the hardwood stand, but decreased in the organic horizon and increased slightly in the 0,5 cm mineral soil in the pine stand. These findings indicate that long-term N addition either by fertilization or deposition may alter the size, composition and/or physiology of the community of CO consumers so that their ability to act as a sink for atmospheric CO has changed. This change could have a substantial effect on the lifetime of greenhouse gases such as CH4 and therefore the future of Earth's climate. [source] Palladium and platinum sorption on a thiocarbamoyl-derivative of chitosanJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010A. Butewicz Abstract Immobilizing thiourea onto chitosan allowed using the polymer for the recovery of platinum groups metals (PGMs) in acidic solutions (up to 1,2M HCl concentrations). At low HCl concentration protonated amine groups may sorb chloroanionic metal species (electrostatic attraction mechanism); however, most of sorption proceeds through chelation on sulfur containing groups (less sensitive to acidic conditions). The bi-site Langmuir equation was used for fitting sorption isotherms. The sorption of PGMs was weakly affected by the composition of the solution (presence of high concentration of anions and base metals). Maximum sorption capacities for Pd(II) and Pt(IV) ranged between 274 and 330 mg g,1 in 0.25M HCl solutions and decreased to 150,198 mg g,1 in 2M HCl solutions: Pd(II) sorption was systematically higher than Pt(IV) sorption. The pseudo-second rate equation was used for modeling the uptake kinetics. Agitation speed hardly affected uptake kinetics indicating that external diffusion resistance is not the rate controlling step. Desorption yield higher than 85% were obtained using thiourea in 0.1M HCl solution. The adsorbents could be reused for at least three cycles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Lipophilic cationic drugs increase the permeability of lysosomal membranes in a cell culture system,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010Johannes Kornhuber Lysosomes accumulate many drugs several fold higher compared to their extracellular concentration. This mechanism is believed to be responsible for many pharmacological effects. So far, uptake and release kinetics are largely unknown and interactions between concomitantly administered drugs often provoke mutual interference. In this study, we addressed these questions in a cell culture model. The molecular mechanism for lysosomal uptake kinetics was analyzed by live cell fluorescence microscopy in SY5Y cells using four drugs (amantadine, amitriptyline, cinnarizine, flavoxate) with different physicochemical properties. Drugs with higher lipophilicity accumulated more extensively within lysosomes, whereas a higher pKa value was associated with a more rapid uptake. The drug-induced displacement of LysoTracker was neither caused by elevation of intra-lysosomal pH, nor by increased lysosomal volume. We extended our previously developed numerical single cell model by introducing a dynamic feedback mechanism. The empirical data were in good agreement with the results obtained from the numerical model. The experimental data and results from the numerical model lead to the conclusion that intra-lysosomal accumulation of lipophilic xenobiotics enhances lysosomal membrane permeability. Manipulation of lysosomal membrane permeability might be useful to overcome, for example, multi-drug resistance by altering subcellular drug distribution. J. Cell. Physiol. 224:152,164, 2010 © 2010 Wiley-Liss, Inc. [source] KINETICS OF NITRATE, AMMONIUM, AND UREA UPTAKE BY FOUR INTERTIDAL SEAWEEDS FROM NEW ZEALAND,JOURNAL OF PHYCOLOGY, Issue 3 2004Julia C. Phillips The competitive ability for N uptake by four intertidal seaweeds, Stictosiphonia arbuscula (Harvey) King et Puttock, Apophlaea lyallii Hook. f. et Harvey, Scytothamnus australis Hook. f. et Harvey, and Xiphophora gladiata (Labillardière) Montagne ex Harvey, from New Zealand is described by the uptake kinetics for NO3,, NH4+, and urea. This is the first study to report uptake kinetics for N uptake by a range of southern hemisphere intertidal seaweeds in relation to season and zonation. Species growing at the highest shore positions had higher NO3, and urea uptake at both high and low concentrations and had unsaturable NH4+ uptake in both summer and winter. Although there was evidence of some feedback inhibition of Vmax for NO3, uptake by Stictosiphonia arbuscula growing at the lower vertical limits of its range, rates were high compared with species growing lower on the shore. Our results highlight the superior competitive ability for N uptake of certain high intertidal seaweeds, and consistent with our previous findings we can conclude that intertidal seaweeds in southeast New Zealand are adapted to maximizing N acquisition in a potentially N-limiting environment. [source] Influence of nitric oxide synthase inhibition on pulmonary O2 uptake kinetics during supra-maximal exercise in humansTHE JOURNAL OF PHYSIOLOGY, Issue 2 2004Daryl P. Wilkerson We have recently reported that inhibition of nitric oxide synthase (NOS) with NG -nitro- l -arginine methyl ester (l -NAME) accelerates the ,phase II' pulmonary O2 uptake kinetics following the onset of moderate and heavy intensity submaximal exercise in humans. These data suggest that the influence of nitric oxide (NO) on mitochondrial function is an important factor in the inertia to aerobic respiration that is evident in the transition from a lower to a higher metabolic rate. The purpose of the present study was to investigate the influence of l -NAME on pulmonary kinetics following the onset of supra-maximal exercise, where it has been suggested that O2 availability represents an additional limitation to kinetics. Seven healthy young men volunteered to participate in this study. Following an incremental cycle ergometer test for the determination of , the subjects returned on two occasions to perform a ,step' exercise test from a baseline of unloaded cycling to a work rate calculated to require 105%, preceded either by systemic infusion of l -NAME (4 mg kg,1 in 50 ml saline) or 50 ml saline as a control (Con). Pulmonary gas exchange was measured on a breath-by-breath basis throughout the exercise tests. The duration of ,phase I' was greater with l -NAME (Con: 14.0 ± 2.1 versusl -NAME: 16.0 ± 1.6 s; P= 0.03), suggestive of a slower cardiovascular adaptation following the onset of exercise. However, the phase II time constant was reduced by 44% with l -NAME (Con: 36.3 ± 17.3 versusl -NAME: 20.4 ± 8.3 s; P= 0.01). The accumulation of blood lactate during exercise was also reduced with l -NAME (Con: 4.0 ± 1.1 versusl -NAME: 2.7 ± 2.1 mm; P= 0.04). These data indicate that skeletal muscle NO production represents an important limitation to the acceleration of oxidative metabolism following the onset of supra-maximal exercise in humans. [source] When to say when: can excessive drinking explain silicon uptake in diatoms?BIOESSAYS, Issue 3 2009Kimberlee Thamatrakoln Abstract Diatoms are the single most important drivers of the oceanic silicon biogeochemical cycle. Due to their considerable promise in nanotechnology, there is tremendous interest in understanding the mechanism by which they produce their intricately and ornately decorated silica-based cell wall. Although specific proteins have been implicated in some of the key steps of silicification, the exact mechanisms are poorly understood. Silicon transporters, identified in both diatoms and silicoflagellates, are hypothesized to mediate silicon uptake. Recently, macropinocytosis, the non-specific engulfment of extracellular fluid, was proposed as a more energetically favorable uptake mechanism, which can also explain the long-observed effect of salinity on frustule morphology. We explore the bioenergetic, membrane recycling, and vacuolar volume requirements that must be satisfied for pinocytosis-mediated silicon uptake. These calculated requirements contrast starkly with existing data on diatom physiology, uptake kinetics, growth, and ultrastructure, leading us to conclude that pinocytosis cannot be the primary mechanism of silicon uptake. [source] Dynamics of protein uptake within the adsorbent particle during packed bed chromatographyBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2002Jürgen Hubbuch Abstract A new experimental set-up for on-line visualization of the intra-particle uptake kinetics during packed bed chromatography has been designed and tested. Confocal laser scanning microscopy was used to analyze the dynamics of protein adsorption to porous stationary phases. In combination with this, a flow cell was developed that could be packed with chromatography media and operated as a fully functional mini-scale chromatography column. Adsorption profiles of single- and two-component mixtures containing BSA and IgG 2a during packed bed cation-exchange chromatography were investigated. The two proteins appear to exhibit different transport characteristics. For BSA a classical "shrinking core" behavior could be detected. The profiles obtained during IgG 2a adsorption point toward a different transport mode, which deviates from the classical pore-diffusion picture. For the two-component system, a superposition of the single-component profiles combined with a classical displacement of the weaker bound protein species was found. The results indicate that depending on the adsorbed protein the uptake can vary tremendously, even for adsorption to the same chromatographic support. It is clearly shown that the new microcolumn allows in situ quantitative investigations of protein adsorption dynamics within a single particle, which adds a new tool to the available methods for characterizing and optimizing protein adsorption chromatography. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 359,368, 2002. [source] Sustained Growth of Explants from Mediterranean Sponge Crambe crambe Cultured In Vitro with Enriched RPMI 1640BIOTECHNOLOGY PROGRESS, Issue 3 2006F. Garcia Camacho Marine sponges are potential sources of many unique metabolites, including cytotoxic and anticancer compounds. Natural sponge populations are insufficient or inaccessible for producing commercial quantities of metabolites of interest. It is commonly accepted that tissue (fragments, explants, and primmorphs) and in vitro cell cultivation show great potential. However, there is little knowledge of the nutritional requirements of marine sponges to carry out efficient and sustained in vitro culture and progress has been slow. In marine invertebrate fila many unsuccessful attempts have been made with in vitro cultures using typical commercial animal cell media based on sources of dissolved organic carbon (DOC) (e.g., DMEM, RPMI, M199, L-15, etc.). One of the reasons for this failure is the use of hardly identifiable growth promoters, based on terrestrial animal sera. An alternative is the use of extracts from marine animals, since they may contain nutrients necessary for growth. In this work we have cultivated in vitro explants of the encrusting marine sponge Crambe crambe. It is one of the most abundant sponges on the Mediterranean coastline and also possesses an array of potentially active metabolites (crambines and crambescidins). Initially a new approach was developed in order to show consumption of DOC by explants. Thus, different initial DOC concentrations (300, 400, 700 and 1200 mg DOC L,1) were assayed. Consumption was evident in all four assays and was more marked in the first 6 h. The DOC assimilation data were adjusted to an empirical model widely used for uptake kinetics of organic dissolved compounds in marine invertebrates. Second, a protocol was established to cultivate explants in vitro. Different medium formulations based on RPMI 1640 commercial medium enriched with amino acids and inorganic salts to emulate seawater salinity were assayed. The enrichment of this medium with an Octopusaqueous extract in the proportions of 10% and 20% (v/v) resulted in an evident sustained long-term growth of C. crambe explants. This growth enhancement produced high metabolic activity in the explants, as is confirmed by the high ammonium and lactate content in the medium a few days after its renewal and by the consumption of glucose. The lactate accumulation increased with the size and age of explants. Prior to these experiments, we successfully developed a robust new alternative method, based on digital image treatment, for accurate determination of the explant apparent volume as growth measure. [source] Generation of Equally Sized Particle Plaques Using Solid-Liquid SuspensionsBIOTECHNOLOGY PROGRESS, Issue 3 2006Tim Herrmann A device is presented for the generation of equally sized plaques of sensitive particles in a 96-well format. The resulting particle plaques can be used for the measurement of adsorption isotherms and uptake kinetics in protein chromatography or for immobilization reactions. The particle plaques are formed from suspensions with a vacuum device that is designed as a reusable sandwich module. The particles are retained by a mesh while the solvent is removed by the vacuum. As most particles used for protein chromatography are sensitive to mechanical stress and dehydration, the vacuum device is gentle enough to allow the use of these particles, thus eliminating the uncertainty of slurry preparation and pipetting. Apparatus characteristics and preparation procedures are described precisely. The physical intactness of the particles after the preparation procedure is proved by microscopic analysis. Data on the uniformity of the obtained resin plaques with respect to the reproducibility of their adsorption performance is given. Finally, adsorption isothermal and kinetic data of BSA on an ordinary HIC system obtained by high-throughput measurements are shown as an application example. [source] |