Home About us Contact | |||
Uptake Flux (uptake + flux)
Selected AbstractsIsotopic and petrological evidence of fluid,rock interaction at a Tethyan ocean,continent transition in the Alps: implications for tectonic processes and carbon transfer during early ocean formationGEOFLUIDS (ELECTRONIC), Issue 4 2007A. ENGSTRÖM Abstract We report overprinting stable isotope evidence of fluid,rock interaction below two detachment faults along which mantle rocks were exhumed to the seafloor, between the respective landward and seaward limits of oceanic and continental crust, at a Tethyan ocean,continent transition (OCT). This OCT, which is presently exposed in the Tasna nappe (south-eastern Switzerland) is considered an on-land analogue of the well-studied Iberian OCT. We compare our results with the fault architecture (fault core,damage zone,protolith) described by Caine et al. [Geology (1996) Vol. 24, pp. 1025,1028]. We confirm the existence of a sharp boundary between the fault core and damage zone based on isotopic data, but the boundary between the damage zone and protolith is gradational. We identify evidence for: (1) pervasive isotopic modification to 8.4 ± 0.1, which accompanied or post-dated serpentinization of these mantle rocks at an estimated temperature of 67,109°C, (2) either (i) partial isolation of some highly strained regions [fault core(s) and mylonite] from this pervasive isotopic modification, because of permeability reduction (Caine et al.) or (ii) subsequent isotopic modification caused by structurally channelled flow of warm fluids within these highly strained regions, because of permeability enhancement, and (3) isotopic modification, which is associated with extensive calcification at T = 54,100°C, primarily beneath the younger of the two detachment faults and post-dating initial serpentinization. By comparing the volumetric extent of calcification with an experimentally verified model for calcite precipitation in veins, we conclude that calcification could have occurred in response to seawater infiltration, with a calculated flux rate of 0.1,0.2 m year,1 and a minimum duration of 0.2,4.0 × 104 years. The associated time-averaged uptake flux of carbon during this period was 8,120 mol m,2 year,1. By comparison with the estimated area of exhumed mantle rocks at the Iberian OCT, we calculate a maximum annual uptake flux for carbon of 2,30 Tg year,1. This is an order of magnitude greater than that for carbon exchange at the mid-ocean ridges and 0.1,1.4% of the global oceanic uptake flux for carbon. [source] Carbon dioxide exchange of a Russian boreal forest after disturbance by wind throwGLOBAL CHANGE BIOLOGY, Issue 3 2002Alexander Knohl Abstract The exchange of carbon dioxide (CO2) between the atmosphere and a forest after disturbance by wind throw in the western Russian taiga was investigated between July and October 1998 using the eddy covariance technique. The research area was a regenerating forest (400 m × 1000 m), in which all trees of the preceding generation were uplifted during a storm in 1996. All deadwood had remained on site after the storm and had not been extracted for commercial purposes. Because of the heterogeneity of the terrain, several micrometeorological quality tests were applied. In addition to the eddy covariance measurements, carbon pools of decaying wood in a chronosequence of three different wind throw areas were analysed and the decay rate of coarse woody debris was derived. During daytime, the average CO2 uptake flux was ,3 µmol m,2s,1, whereas during night-time characterised by a well-mixed atmosphere the rates of release were typically about 6 µmol m,2s,1. Suppression of turbulent fluxes was only observed under conditions with very low friction velocity (u* , 0.08 ms,1). On average, 164 mmol CO2 m,2d,1 was released from the wind throw to the atmosphere, giving a total of 14.9 mol CO2 m,2 (180 g CO2 m,2) released during the 3-month study period. The chronosequence of dead woody debris on three different wind throw areas suggested exponential decay with a decay coefficient of ,0.04 yr,1. From the magnitude of the carbon pools and the decay rate, it is estimated that the decomposition of coarse woody debris accounted for about a third of the total ecosystem respiration at the measurement site. Hence, coarse woody debris had a long-term influence on the net ecosystem exchange of this wind throw area. From the analysis performed in this work, a conclusion is drawn that it is necessary to include into flux networks the ecosystems that are subject to natural disturbances and that have been widely omitted into considerations of the global carbon budget. The half-life time of about 17 years for deadwood in the wind throw suggests a fairly long storage of carbon in the ecosystem, and indicates a very different long-term carbon budget for naturally disturbed vs. commercially managed forests. [source] Prediction of metabolic function from limited data: Lumped hybrid cybernetic modeling (L-HCM)BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2010Hyun-Seob Song Abstract Motivated by the need for a quick quantitative assessment of metabolic function without extensive data, we present an adaptation of the cybernetic framework, denoted as the lumped hybrid cybernetic model (L-HCM), which combines the attributes of the classical lumped cybernetic model (LCM) and the recently developed HCM. The basic tenet of L-HCM and HCM is the same, that is, they both view the uptake flux as being split among diverse pathways in an optimal way as a result of cellular regulation such that some chosen metabolic objective is realized. The L-HCM, however, portrays this flux distribution to occur in a hierarchical way, that is, first among lumped pathways, and next among individual elementary modes (EM) in each lumped pathway. Both splits are described by the cybernetic control laws using operational and structural return-on-investments, respectively. That is, the distribution of uptake flux at the first split is dynamically regulated according to environmental conditions, while the subsequent split is based purely on the stoichiometry of EMs. The resulting model is conveniently represented in terms of lumped pathways which are fully identified with respect to yield coefficients of all products unlike classical LCMs based on instinctive lumping. These characteristics enable the model to account for the complete set of EMs for arbitrarily large metabolic networks despite containing only a small number of parameters which can be identified using minimal data. However, the inherent conflict of questing for quantification of larger networks with smaller number of parameters cannot be resolved without a mechanism for parameter tuning of an empirical nature. In this work, this is accomplished by manipulating the relative importance of EMs by tuning the cybernetic control of mode-averaged enzyme activity with an empirical parameter. In a case study involving aerobic batch growth of Saccharomyces cerevisiae, L-HCM is compared with LCM. The former provides a much more satisfactory prediction than the latter when parameters are identified from a few primary metabolites. On the other hand, the classical model is more accurate than L-HCM when sufficient datasets are involved in parameter identification. In applying the two models to a chemostat scenario, L-HCM shows a reasonable prediction on metabolic shift from respiration to fermentation due to the Crabtree effect, which LCM predicts unsatisfactorily. While L-HCM appears amenable to expeditious estimates of metabolic function with minimal data, the more detailed dynamic models [such as HCM or those of Young et al. (Young et al., Biotechnol Bioeng, 2008; 100: 542,559)] are best suited for accurate treatment of metabolism when the potential of modern omic technology is fully realized. However, in view of the monumental effort surrounding the development of detailed models from extensive omic measurements, the preliminary insight into the behavior of a genotype and metabolic engineering directives that can come from L-HCM is indeed valuable. Biotechnol. Bioeng. 2010;106: 271,284. © 2010 Wiley Periodicals, Inc. [source] |