Home About us Contact | |||
Upregulated Transcripts (upregulated + transcript)
Selected AbstractsDifferential expression of insulin-like growth factor binding protein-5 in pancreatic adenocarcinomas: Identification using DNA microarrayMOLECULAR CARCINOGENESIS, Issue 11 2006Sarah K. Johnson Abstract Pancreatic ductal adenocarcinoma (PDAC) is characterized by its aggressiveness and resistance to both radiation and chemotherapeutic treatment. To better understand the molecular pathogenesis of pancreatic cancer, DNA array technology was employed to identify genes differentially expressed in pancreatic tumors when compared to non-malignant pancreatic tissues. RNA isolated from 11 PDACs and 14 non-malignant bulk pancreatic duct specimens was used to probe Affymetrix U95A DNA arrays. Genes that displayed at least a fourfold differential expression were identified and real-time quantitative PCR was used to verify the differential expression of selected upregulated genes. Interrogation of the DNA array revealed that 73 genes were upregulated in PDACs and 77 genes were downregulated. The majority of the 150 genes identified have not been previously reported to be differentially expressed in pancreatic tumors, although a number of the upregulated transcripts have been reported previously. Immunohistochemistry was used to correlate calponin and insulin-like growth factor binding protein-5 (IGFBP-5) RNA levels with protein expression in PDACs and revealed peritumoral calponin staining in the reactive stroma and intense focal staining of islets cells expressing IGFBP-5 at the edge of tumors; thus implicating the interplay of various cell types to promote neoplastic cell growth within pancreatic carcinomas. As a potential modulator of cell proliferation, the overexpression of IGFBP-5 may, therefore, play a significant role in the malignant transformation of normal pancreatic epithelial cells. © 2006 Wiley-Liss, Inc. [source] Identification of molecular targets associated with transformed diffuse large B cell lymphoma using highly purified tumor cells,AMERICAN JOURNAL OF HEMATOLOGY, Issue 12 2009Ulrika Andréasson Follicular lymphoma (FL) frequently transforms into the more aggressive diffuse large B cell lymphoma (DLBCL-tr), but no protein biomarkers have been identified for predictive or early diagnosis. Gene expression analyses have identified genes changing on transformation but have failed to be reproducible in different studies, reflecting the heterogeneity within the tumor tissue and between tumor samples. Gene expression analyses on Affymetrix Human Genome U133 Plus 2.0 arrays were performed, using flow cytometry sorted tumor cells derived from FL and transformed DLBCL. To identify molecular targets associated with the transformation, subsequent immunohistochemistry (IHC) analyses of the corresponding proteins were performed. Using highly purified cells, this study identified 163 genes, which were significantly deregulated during the transformation in a majority of cases. Among the upregulated transcripts, 13 genes were selected for validation using IHC, based on the availability of commercial antibodies, and galectin-3 and NEK2 proteins specifically identify DLBCL-tr, when compared with FL. We demonstrate that by purifying tumor cells through cell sorting, thereby reducing the heterogeneity due to infiltrating cells, it was possible to identify distinct differences between tumor entities rather than variations due to cellular composition. Galectin-3 and NEK2 both identified a subgroup of DLBCL-tr, and the function of these protein markers also suggests a biological role in the transformation process. Am. J. Hematol. 2009. © 2009 Wiley-Liss, Inc. [source] Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant deathTHE PLANT JOURNAL, Issue 6 2004Shisong Ma Summary Arabidopsis TIP1;1 (,TIP) is a member of the tonoplast family of aquaporins (AQP). Using RNA interference (RNAi) we reduced TIP1;1 to different extent in various lines. When most severely affected, miniature plants died, a phenotype partially complemented by the TIP1;1 homolog McMIP-F. Less severely affected lines produced small plants, early senescence, and showed lesion formation. The relative water content in TIP1;1 RNAi plants was not significantly affected. Global expression profiling suggested a disturbance in carbon metabolism in RNAi lines with upregulated transcripts for functions in carbon acquisition and respiration, vesicle transport, signaling and transcription, and radical oxygen stress. Metabolite profiles showed low glucose, fructose, inositol, and threonic, succinic, fumaric, and malic acids, but sucrose levels were similar to WT. Increased amounts were found for raffinose and several unknown compounds. TIP1;1 RNAi plants also contained high starch and apoplastic carbohydrate increased. A GFP-TIP1;1 fusion protein indicated tonoplast location in spongy mesophyll cells, and high signal intensity in palisade mesophyll associated with vesicles near plastids. Signals in vascular tissues were strongest not only in vesicle-like structures but also outlined large vacuoles. Compromised routing of carbohydrate and lack of sucrose provision for cell-autonomous functions seems to characterize this RNAi phenotype. We suggest a function for TIP1;1 in vesicle-based metabolite routing through or between pre-vacuolar compartments and the central vacuole. Phenotype and expression characteristics support a view of TIP1;1 functioning as a marker for vesicles that are targeted to the central vacuole. [source] Genome-Wide Transcription Profile of Endothelial Cells After Cardiac Transplantation in the RatAMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2010B. Mikalsen Transcriptome analyses of organ transplants have until now usually focused on whole tissue samples containing activation profiles from different cell populations. Here, we enriched endothelial cells from rat cardiac allografts and isografts, establishing their activation profile at baseline and on days 2, 3 and 4 after transplantation. Modulated transcripts were assigned to three categories based on their regulation profile in allografts and isografts. Categories A and B contained the majority of transcripts and showed similar regulation in both graft types, appearing to represent responses to surgical trauma. By contrast, category C contained transcripts that were partly allograft-specific and to a large extent associated with interferon-,-responsiveness. Several transcripts were verified by immunohistochemical analysis of graft lesions, among them the matricellular protein periostin, which was one of the most highly upregulated transcripts but has not been associated with transplantation previously. In conclusion, the majority of the differentially expressed genes in graft endothelial cells are affected by the transplantation procedure whereas relatively few are associated with allograft rejection. [source] |