Home About us Contact | |||
U-Pb Ages (u-pb + age)
Kinds of U-Pb Ages Selected AbstractsAccurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass SpectrometryGEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 3 2004Honglin Yuan LA-ICP-MS; laser excimer; zircon; géochronologie; éléments en trace Various zircons of Proterozoic to Oligocene ages (1060-31 Ma) were analysed by laser ablation-inductively coupled plasma-mass spectrometry. Calibration was performed using Harvard reference zircon 91500 or Australian National University reference zircon TEMORA 1 as external calibrant. The results agree with those obtained by SIMS within 2s error. Twenty-four trace and rare earth elements (P, Ti, Cr, Y, Nb, fourteen REE, Hf, Ta, Pb, Th and U) were analysed on four fragments of zircon 91500. NIST SRM 610 was used as the reference material and 29Si was used as internal calibrant. Based on determinations of four fragments, this zircon shows significant intra-and inter-fragment variations in the range from 10% to 85% on a scale of 120 ,m, with the variation of REE concentrations up to 38.7%, although the chondrite-normalised REE distributions are very similar. In contrast, the determined age values for zircon 91500 agree with TIMS data and are homogeneous within 8.7 Ma (2s). A two-stage ablation strategy was developed for optimising U-Pb age determinations with satisfactory trace element and REE results. The first cycle of ablation was used to collect data for age determination only, which was followed by continuous ablation on the same spot to determine REE and trace element concentrations. Based on this procedure, it was possible to measure zircon ages as low as 30.37 0.39 Ma (MSWD = 1.4; 2s). Other examples for older zircons are also given. Différents zircons d'âges variant du Protérozoïque à l'Oligocène (1060-31 Ma) ont été analysés par spectrométrie avec source à plasma induit et ablation laser. La calibration a été faite en utilisant le zircon 91500 de référence de Harvard ou le zircon TEMORA 1 de référence de l'Université Nationale Australienne comme calibrant externe. Les résultats sont en accord avec ceux obtenus par SIMS aux erreurs analytiques près (2s). Vingt-quatre éléments en trace et Terres Rares (P, Ti, Cr, Y, Nb, quatorze ETR, Hf, Ta, Pb, Th et U) ont été analysés sur quatre fragments du zircon 91500. Le standard SRM 610 de NIST a été utilisé comme matériau de référence et 29Si comme calibrant interne. À partir des déterminations faites sur ces quatre fragments, ce zircon montre des variations intra et inter fragments de l'ordre de 10%à 85%à une échelle de 120 ,m, avec des variations des concentrations de Terres Rares allant jusquà 38.7%, bien que le spectre de Terres Rares normalisé aux chondrites reste très constant. Au contraire, les âges déterminés pour le zircon 91500 sont en accord avec les résultats de TIMS et sont homogènes à 8.7 Ma près (2s). Une stratégie d'ablation en deux étapes a été développée pour optimiser les déterminations d'âges U-Pb, et avoir des résultats de Terres Rares et d'éléments en trace satisfaisants. Le premier cycle d'ablation était utilisé pour collecter les données nécessaires à la détermination de l'âge seulement et était suivi d'un cycle d'ablation continue sur le même spot, pour déterminer les concentrations en Terres Rares et en éléments en trace. Grâce à cette procédure, il a été possible de mesurer des âges sur zircons aussi récents que 30.37 0.39 Ma (MSWD = 1.4; 2s). D'autres exemples sur des zircons plus vieux sont aussi donnés. [source] Cretaceous Volcanic Events in Southeastern Jilin Province, China: Evidence from Single Zircon U-Pb AgesACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2008CHEN Yuejun Abstract: Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area. Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China. Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning, a number of researchers have focused on Mesozoic volcanic events. The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb. The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age, the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma, the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma, respectively. Combined with the data of recent publication on volcanic rocks ages; the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods: 119 Ma, 113 Ma and 103 Ma. The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province, establishing Mesozoic volcanic event sequence, discussing geological tectonic background, and surveying the relation between noble metals to the Cretaceous volcanic rocks, but also offers important information of Mesozoic volcanism in northeastern China. [source] Fluid flow during exhumation of deeply subducted continental crust: zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogiteJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2007Y.-F. ZHENG Abstract Quartz veins in high-pressure to ultrahigh-pressure metamorphic rocks witness channelized fluid flow that transports both mass and heat during collisional orogenesis. This flow can occur in the direction of changing temperature/pressure during subduction or exhumation. SHRIMP U-Pb dating of zircon from a kyanite-quartz vein within ultrahigh-pressure eclogite in the Dabie continental collision orogen yields two age groups at 212 ± 7 and 181 ± 13 Ma, which are similar to two groups of LA-ICPMS age at 210 ± 4 and 180 ± 5 Ma for the same sample. These ages are significantly younger than zircon U-Pb ages of 224 ± 2 Ma from the host eclogite. Thus the two age groups from the vein date two episodes of fluid flow involving zircon growth: the first due to decompression dehydration during exhumation, and the second due to heating dehydration in response to a cryptic thermal event after continental collision. Laser fluorination O-isotope analyses gave similar ,18O values for minerals from both vein and eclogite, indicating that the vein-forming fluid was internally derived. Synchronous cooling between the vein and eclogite is suggested by almost the same quartz,mineral fractionation values, with regularly decreasing temperatures that are in concordance with rates of O diffusion in the minerals. While the quartz veining was caused by decompression dehydration at 700,650 °C in a transition from ultrahigh-pressure to high-pressure eclogite-facies retrogression, the postcollisional fluid flow was retriggered by heating dehydration at ,500 °C without corresponding metamorphism. In either case, the kyanite,quartz vein formed later than the peak ultrahigh-pressure metamorphic event at the Middle Triassic, pointing to focused fluid flow during exhumation rather than subduction. The growth of metamorphic zircon in the eclogite appears to have depended on fluid availability, so that their occurrence is a type of geohygrometer besides geochronological applicability to dating of metamorphic events in orogenic cycles. [source] Neoproterozoic Mafic Dykes and Basalts in the Southern Margin of Tarim, Northwest China: Age, Geochemistry and Geodynamic ImplicationsACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2010Chuanlin ZHANG Abstract: Neoproterozoic rifting-related mafic igneous rocks are widely distributed both in the northern and southern margins of the Tarim Block, NW China. Here we report the geochronology and systematic whole-rock geochemistry of the Neoproterozoic mafic dykes and basalts along the southern margin of Tarim. Our zircon U-Pb age, in combination with stratigraphic constraint on their emplacement ages, indicates that the mafic dykes were crystallized at ca. 802 Ma, and the basalt, possibly coeval with the ca. 740 Ma volcanic rocks in Quruqtagh in the northern margin of Tarim. Elemental and Nd isotope geochemistry of the mafic dykes and basalts suggest that their primitive magma was derived from asthenospheric mantle (OIB-like) and lithospheric mantle respectively, with variable assimilation of crustal materials. Integrating the data supplied in the present study and that reported previously in the northern margin of Tarim, we recognize two types of mantle sources of the Neoproterozoic mafic igneous rocks in Tarim, namely the matasomatized subcontinental lithospheric mantle (SCLM) in the northern margin and the long-term enriched lithospheric mantle and asthenospheric mantle in the southern margin. A comprehensive synthesis of the Neoproterozoic igneous rocks throughout the Tarim Block led to the recognition of two major episodes of Neoproterozoic igneous activities at ca. 820,800 Ma and ca. 780,740 Ma, respectively. These two episodes of igneous activities were concurrent with those in many other Rodinian continents and were most likely related to mantle plume activities during the break-up of the Rodinia. [source] Fluid flow during exhumation of deeply subducted continental crust: zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogiteJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2007Y.-F. ZHENG Abstract Quartz veins in high-pressure to ultrahigh-pressure metamorphic rocks witness channelized fluid flow that transports both mass and heat during collisional orogenesis. This flow can occur in the direction of changing temperature/pressure during subduction or exhumation. SHRIMP U-Pb dating of zircon from a kyanite-quartz vein within ultrahigh-pressure eclogite in the Dabie continental collision orogen yields two age groups at 212 ± 7 and 181 ± 13 Ma, which are similar to two groups of LA-ICPMS age at 210 ± 4 and 180 ± 5 Ma for the same sample. These ages are significantly younger than zircon U-Pb ages of 224 ± 2 Ma from the host eclogite. Thus the two age groups from the vein date two episodes of fluid flow involving zircon growth: the first due to decompression dehydration during exhumation, and the second due to heating dehydration in response to a cryptic thermal event after continental collision. Laser fluorination O-isotope analyses gave similar ,18O values for minerals from both vein and eclogite, indicating that the vein-forming fluid was internally derived. Synchronous cooling between the vein and eclogite is suggested by almost the same quartz,mineral fractionation values, with regularly decreasing temperatures that are in concordance with rates of O diffusion in the minerals. While the quartz veining was caused by decompression dehydration at 700,650 °C in a transition from ultrahigh-pressure to high-pressure eclogite-facies retrogression, the postcollisional fluid flow was retriggered by heating dehydration at ,500 °C without corresponding metamorphism. In either case, the kyanite,quartz vein formed later than the peak ultrahigh-pressure metamorphic event at the Middle Triassic, pointing to focused fluid flow during exhumation rather than subduction. The growth of metamorphic zircon in the eclogite appears to have depended on fluid availability, so that their occurrence is a type of geohygrometer besides geochronological applicability to dating of metamorphic events in orogenic cycles. [source] U-Pb Age Determination for Seven Standard Zircons using Inductively Coupled Plasma,Mass Spectrometry Coupled with Frequency Quintupled Nd-YAG (, = 213 nm) Laser Ablation System: Comparison with LA-ICP-MS Zircon Analyses with a NIST Glass Reference MaterialRESOURCE GEOLOGY, Issue 2 2008Yuji Orihashi Abstract This paper evaluates the analytical precision, accuracy and long-term reliability of the U-Pb age data obtained using inductively coupled plasma,mass spectrometry (ICP-MS) with a frequency quintupled Nd-YAG (, = 213nm) laser ablation system. The U-Pb age data for seven standard zircons of various ages, from 28 Ma to 2400 Ma (FCT, SL13, 91500, AS3, FC1, QGNG and PMA7) were obtained with an ablation pit size of 30 ,m diameter. For 207Pb/206Pb ratio measurement, the mean isotopic ratio obtained on National Institute of Standards and Technology (NIST) SRM610 over 4 months was 0.9105 ± 0.0014 (n = 280, 95% confidence), which agrees well with the published value of 0.9096. The time-profile of Pb/U ratios during single spot ablation showed no significant difference in shape from NIST SRM610 and 91500 zircon standards. These results encouraged the use of the glass standard as a calibration standard for the Pb/U ratio determination for zircons with shorter wavelength (, = 213 nm) laser ablation. But 206Pb/238U and 207Pb/235U ages obtained by this method for seven zircon standards are systematically younger than the published U-Pb ages obtained by both isotope dilution,thermal ionization mass spectrometry (ID-TIMS) and sensitive high-resolution ion-microprobe (SHRIMP). Greater discrepancies (3,4% younger ages) were found for the 206Pb/238U ages for SL13, AS3 and 91500 zircons. The origin of the differences could be heterogeneity in Pb/U ratio on SRM610 between the different disks, but a matrix effect accuracy either in the ICP ion source or in the ablation-transport processes of the sample aerosols cannot be neglected. When the 206Pb/238U (= 0.2302) newly defined in the present study is used, the measured 206Pb/238U and 207Pb/235U ages for the seven zircon standards are in good agreement with those from ID-TIMS and SHRIMP within ±2%. This suggests that SRM610 glass standard is suitable for ICP-MS with laser ablation sampling (LA-ICP-MS) zircon analysis, but it is necessary to determine the correction factor for 206Pb/238U by measuring several zircon standards in individual laboratories. [source] SHRIMP U-Pb Zircon Age of the Inishi Migmatite around the Kamioka Mining Area, Hida Metamorphic Complex, Central JapanRESOURCE GEOLOGY, Issue 1 2006Masatoshi Sakoda Abstract. SHRIMP U-Pb ages were determined on single zircons separated from the Inishi migmatite in the Kamioka mining area, Hida metamorphic complex, central Japan. Twenty one determinations were distributed within the age of 234.2±1.8 Ma, excluding one inner core of a grain. As the analyzed crystals were mostly euhedral igneous zircons, the age indicates the crystallization of zircons from granitic melt during the formation of Inishi migmatite. The age of ca. 234 Ma corresponded to the later stage of the major regional metamorphic event in the Hida complex, while the age of ca. 265 Ma determined in a grain suggested the inherited age of the earlier phase of the metamorphism. [source] Importance of predecessor basin history on sedimentary fill of a retroarc foreland basin: provenance analysis of the Cretaceous Magallanes basin, Chile (50,52°S)BASIN RESEARCH, Issue 5 2010B. W. Romans ABSTRACT An integrated provenance analysis of the Upper Cretaceous Magallanes retroarc foreland basin of southern Chile (50°30,,52°S) provides new constraints on source area evolution, regional patterns of sediment dispersal and depositional age. Over 450 new single-grain detrital-zircon U-Pb ages, which are integrated with sandstone petrographic and mudstone geochemical data, provide a comprehensive detrital record of the northern Magallanes foreland basin-filling succession (>4000-m-thick). Prominent peaks in detrital-zircon age distribution among the Punta Barrosa, Cerro Toro, Tres Pasos and Dorotea Formations indicate that the incorporation and exhumation of Upper Jurassic igneous rocks (ca. 147,155 Ma) into the Andean fold-thrust belt was established in the Santonian (ca. 85 Ma) and was a significant source of detritus to the basin by the Maastrichtian (ca. 70 Ma). Sandstone compositional trends indicate an increase in volcanic and volcaniclastic grains upward through the basin fill corroborating the interpretation of an unroofing sequence. Detrital-zircon ages indicate that the Magallanes foredeep received young arc-derived detritus throughout its ca. 20 m.y. filling history, constraining the timing of basin-filling phases previously based only on biostratigraphy. Additionally, spatial patterns of detrital-zircon ages in the Tres Pasos and Dorotea Formations support interpretations that they are genetically linked depositional systems, thus demonstrating the utility of provenance indicators for evaluating stratigraphic relationships of diachronous lithostratigraphic units. This integrated provenance dataset highlights how the sedimentary fill of the Magallanes basin is unique among other retroarc foreland basins and from the well-studied Andean foreland basins farther north, which is attributed to nature of the predecessor rift and backarc basin. [source] Reclassification of the Meso- and Neoproterozoic Chronostratigraphy of North China by SHRIMP Zircon AgesACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009GAO Linzhi Abstract: High-quality zircon U-Pb ages acquired from Meso- and Neoproterozoic strata in North China in recent years has provided a high-resolution chronostratigraphic framework for dating. A basis of this high-level chronostratigraphic system provides the foundation for a global Precambrian study and stratigraphic correlation and so recent geological studies have focused attention on systemic SHRIMP zircon dating. A chronology of Meso- and Neoproterozoic strata and the time of origin of the overlying Changcheng System is given on the basis of new SHRIMP zircon dating from the Qianxi Complex and diabase of the Chuanlinggou Formation. A new tectonostratigraphy for a Neoproterozoic chronostratigraphic framework in the southeastern margin of the North China continent is underpinned by the new SHRIMP zircon dating of a Neoproterozoic mafic magma diabase in the Jiao-Liao-Xu-Huai Sub-Province. [source] Chronology and Geochemistry of Mesozoic Volcanic Rocks in the Linjiang Area, Jilin Province and their Tectonic ImplicationsACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2009Yang YU Abstract: Zircon U-Pb ages and geochemical analytical results are presented for the volcanic rocks of the Naozhigou, Ergulazi, and Sidaogou Formations in the Linjiang area, southeastern Jilin Province to constrain the nature of magma source and their tectonic settings. The Naozhigou Formation is composed mainly of andesite and rhyolite and its weighted mean 206Pb/238U age for 13 zircon grains is 222±1 Ma. The Ergulazi Formation consists of basaltic andesite, basaltic trachyandesite, and andesite, and six grains give a weighted mean 206Pb/Z38U age of 131±4 Ma. The Sidaogou Formation consists mainly of trachyandesite and rhyolite, and six zircon grains yield a weighted mean 206Pb/238U age of 113±4 Ma. The volcanic rocks have SiO2= 60.24%,77.46%, MgO = 0.36%,1.29% (Mg#= 0.32,0.40) for the Naozhigou Formation, SiO2= 51.60%,59.32%, MgO = 3.70%,5.54% (Mg#= 0.50,0.60) for the Ergulazi Formation, and SiO2= 58.28%,76.32%, MgO = 0.07%,1.20% (Mg#= 0.14,0.46) for the Sidaogou Formation. The trace element analytical results indicate that these volcanic rocks are characterized by enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), relative depletion in heavy rare earth elements (HREEs) and high field strength elements (HFSEs, Nb, Ta, and Ti), and negative Eu anomalies. Compared with the primitive mantle, the Mesozoic volcanic rocks in the Linjiang area have relatively high initial 87Sr/86Sr ratios (0.7053,0.7083) and low ,Nd(t) values (,8.38 to ,2.43), and display an EMU trend. The late Triassic magma for the Naozhigou Formation could be derived from partial melting of a newly accretional crust with the minor involvement of the North China Craton basement and formed under an extensional environment after the collision of the Yangtze Craton and the North China Craton. The Early Cretaceous volcanic rocks for the Ergulazi and Sidaogou Formations could be formed under the tectonic setting of an active continental margin related to the westward subduction of the Izanagi plate. [source] |