Home About us Contact | |||
Unique Responses (unique + response)
Selected AbstractsSpecies-specific Seedling Responses to Hurricane Disturbance in a Puerto Rican Rain Forest1BIOTROPICA, Issue 4 2003Lawrence R. Walker ABSTRACT Seedling dynamics were followed in a Puerto Rican forest for 20 months following a severe hurricane to study the interactive effects of hurricane debris, nutrients, and light on seedling diversity, density, growth, and mortality. Three treatments (debris removal, an unaltered control with hurricane debris, and chemical fertilization added to hurricane debris) altered levels of forest debris and soil nutrients. Canopy openness was measured twice using hemispherical photographs of the canopy. We examined the demographic responses of six common species to treatments over time. Seedling densities increased for all six species but the only significant treatment effects were increased densities of the pioneer tree Cecropia and the shrub Palicourea in the debris removal treatment. Seedling growth declined with declining light levels for four species but not for the pioneer tree Alchornea or the non-pioneer tree Dacryodes. Only Cecropia and the non-pioneer tree Chionanthus had treatment effects on growth. Mortality also differed among species and tended to be highest in the fertilized plots for all but Cecropia and Dacryodes. We found only some of the expected differences between pioneer and non-pioneer plants, as each species had a unique response to the patchy distributions of organic debris, nutrients, and light following the hurricane. High local species diversity was maintained through the individualistic responses of seedlings after a disturbance. RESUMEN Seguimos la dinámica de plántulas en un bosque en Puerto Rico durante 20 meses después del huracán Hugo para estudiar el efecto de la interacción de hojarasca de huracán, nutrientes, y luz sobre la diversidad de especies, la densidad, el crecimiento, y la mortalidad. Establecimos tres tratamientos (remoción de hojarasca, control con la hojarasca de huracán inalterada, y fertilizante químico añadido a la hojarasca del huracán) para alterar los niveles de hojarasca en el bosque y los nutrientes en el suelo. Medimos luz directa e indirecta dos veces usando fotografias hemisféricas del dosel. La diversidad y la uniformidad en la distribución de especies pero no la riqueza de especies fueron reducidas en presencia de fertilización. Durante el estudio examinamos respuestas demográficas de seis especies communes a los tratamientos. La densidad de plántulas aumentó para todas las seis especies pero el único efecto de tratamiento fue el aumento en la densidad del árbol pionero Cecropia y el arbusto Palicourea en el tratamiento de remoción de hojarasca. El crecimiento de plántulas disminuyó según los niveles de luz disminuyeron para cuatro de las especies pero no para el árbol pionero Alchornea o el árbol nopionero Dacryodes. Sólo el crecimiento de Cecropia y del árbol no-pionero Chionanthus fue affectado por los tratamientos. La mortalidad fue diferente entre las especies y tuvo una tendencia a ser mayor en las parcelas fertilizadas. Sólo encontramos algunas de las diferencias esperadas entre plantas pioneras y no-pioneras. Cada especie respondió de forma única a la distribución en parches de hojarasca, nutrientes, y luz luego del huracán. La aha diversidad local de especies se mantuvo a través de las respuestas individualizadas de las plántulas después de la perturbación. [source] SHARED AND UNIQUE FEATURES OF DIVERSIFICATION IN GREATER ANTILLEAN ANOLIS ECOMORPHSEVOLUTION, Issue 2 2006R. Brian Langerhans Abstract Examples of convergent evolution suggest that natural selection can often produce predictable evolutionary outcomes. However, unique histories among species can lead to divergent evolution regardless of their shared selective pressures,and some contend that such historical contingencies produce the dominant features of evolution. A classic example of convergent evolution is the set of Anolis lizard ecomorphs of the Greater Antilles. On each of four islands, anole species partition the structural habitat into at least four categories, exhibiting similar morphologies within each category. We assessed the relative importance of shared selection due to habitat similarity, unique island histories, and unique effects of similar habitats on different islands in the generation of morphological variation in anole ecomorphs. We found that shared features of diversification across habitats were of greatest importance, but island effects on morphology (reflecting either island effects per se or phylogenetic relationships) and unique aspects of habitat diversification on different islands were also important. There were three distinct cases of island-specific habitat diversification, and only one was confounded by phylogenetic relatedness. The other two unique aspects were not related to shared ancestry but might reflect as-yet-unmeasured environmental differences between islands in habitat characteristics. Quantifying the relative importance of shared and unique responses to similar selective regimes provides a more complete understanding of phenotypic diversification, even in this much-studied system [source] Mind's response to the body's betrayal: Gestalt/existential therapy for clients with chronic or life-threatening illnessesJOURNAL OF CLINICAL PSYCHOLOGY, Issue 11 2002Suzanne A. Imes In the literature on chronic or life-threatening illness, there is an overriding emphasis on clients' psychological coping styles and how they relate to psychological functioning. By contrast, in our approach, we look at the subjective mind/body experiences that clients have of their illness and how their lives are impacted by their illness. As psychotherapists, we address their existential distress, pain, body experience, thoughts, and feelings, as well as their efforts to cope or find meaning in their illness. We summarize Gestalt/Existential therapy for chronic illness, illustrate the approach with three case-vignettes, and stress the importance of attending to each client's unique responses to illness. © 2002 Wiley Periodicals, Inc. J Clin Psychol/In Session 58: 1361,1373, 2002. [source] Herbaceous vegetation change in variable rangeland environments: The relative contribution of grazing and climatic variabilityAPPLIED VEGETATION SCIENCE, Issue 2 2001Samuel D. Fuhlendorf Hatch et al. (1990) Abstract. A 44-yr record of herbaceous vegetation change was analysed for three contrasting grazing regimes within a semi-arid savanna to evaluate the relative contribution of confined livestock grazing and climatic variability as agents of vegetation change. Grazing intensity had a significant, directional effect on the relative composition of short- and mid-grass response groups; their composition was significantly correlated with time since the grazing regimes were established. Interannual precipitation was not significantly correlated with response group composition. However, interannual precipitation was significantly correlated with total plant basal area while time since imposition of grazing regimes was not, but both interannual precipitation and time since the grazing regimes were established were significantly correlated with total plant density. Vegetation change was reversible even though the herbaceous community had been maintained in an altered state for ca. 60 yr by intensive livestock grazing. However, ca. 25 yr were required for the mid-grass response group to recover following the elimination of grazing and recovery occurred intermittently. The increase in mid-grass composition was associated with a significant decrease in total plant density and an increase in mean individual plant basal area. Therefore, we failed to reject the hypotheses based on the proportional change in relative response group composition with grazing intensity and the distinct effects of grazing and climatic variability on response group composition, total basal area and plant density. Long-term vegetation change indicates that grazing intensity established the long-term directional change in response group composition, but that episodic climate events defined the short-term rate and trajectory of this change and determines the upper limit on total basal area. The occurrence of both directional and non-directional vegetation responses were largely a function of (1) the unique responses of the various community attributes monitored and (2) the distinct temporal responses of these community attributes to grazing and climatic variation. This interpretation supports previous conclusions that individual ecosystems may exist in equilibrial and non-equilibrial states at various temporal and spatial scales. [source] |